This paper introduces and analyses a general statistical model, termed the RAndom RElaxations (RARE) model, of random relaxation processes in disordered systems. The model considers excitations that are randomly scattered around a reaction center in a general embedding space. The model's input quantities are the spatial scattering statistics of the excitations around the reaction center, and the chemical reaction rates between the excitations and the reaction center as a function of their mutual distance. The framework of the RARE model is versatile and a detailed stochastic analysis of the random relaxation processes is established. Analytic results regarding the duration and the range of the random relaxation processes, as well as the model's thermodynamic limit, are obtained in closed form. In particular, the case of power-law inputs, which turn out to yield stretched exponential relaxation patterns and asymptotically Paretian relaxation ranges, is addressed in detail.

1.
A.
Plonka
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
89
,
37
(
1992
).
2.
H.
Yang
,
G.
Luo
,
P.
Karnchanaphanurach
,
T.-M.
Louie
,
I.
Rech
,
S.
Cova
,
L.
Xun
, and
X. S.
Xie
,
Science
302
,
262
(
2003
).
3.
W. G.
Glöckle
and
T. F.
Nonnenmacher
,
Biophys. J.
68
,
46
(
1995
).
4.
R.
Metzler
,
J.
Klafter
,
J.
Jortner
, and
M.
Volk
,
Chem. Phys. Lett.
293
,
477
(
1998
).
5.
A.
Loidl
and
P.
Lunkenheimer
,
Chem. Phys.
284
,
205
(
2002
).
6.
M.
Reiner
,
Deformation, Strain and Flow
, 3rd ed. (
H. K. Lewis
,
London
,
1969
).
7.
Non-Debye Relaxation in Condensed Matter
, edited by
T. V.
Ramakrishnan
and
L.
Raj Lakshmi
(
World Scientific
,
Singapore
,
1987
).
8.
R.
Metzler
,
W.
Schick
,
H. G.
Kilian
, and
T. F.
Nonnenmacher
,
J. Chem. Phys.
103
,
7180
(
1995
).
9.
W. G.
Glöckle
and
T. F.
Nonnenmacher
,
Macromol.
24
,
6426
(
1991
).
10.
T.
Förster
,
Z. Naturforsch. A
4
,
321
(
1949
).
11.
A.
Blumen
,
J.
Klafter
, and
G.
Zumofen
, in
Optical Spectroscopy of Glasses
, edited by
I.
Zschokke
(
Reidel
,
Amsterdam
,
1986
).
12.
R. G.
Palmer
,
D.
Stein
,
E. S.
Abrahams
, and
P. W.
Anderson
,
Phys. Rev. Lett.
53
,
958
(
1984
).
13.
M. F.
Shlesinger
and
E. W.
Montroll
,
Proc. Natl. Acad. Sci. U.S.A.
81
,
1280
(
1984
).
14.
J.
Klafter
and
M. F.
Shlesinger
,
Proc. Natl. Acad. Sci. U.S.A.
83
,
848
(
1986
).
15.
M. O.
Vlad
,
R.
Metzler
,
T. F.
Nonnenmacher
, and
M. C.
Mackey
,
J. Math. Phys.
37
,
2279
(
1996
).
16.
M.
Caputo
and
F.
Mainardi
,
Riv. Nuovo Cimento
1
,
161
(
1971
).
17.
W. G.
Glöckle
and
T. F.
Nonnenmacher
,
Rheol. Acta
33
,
337
(
1994
).
18.
N.
Heymans
and
J.-C.
Bauwens
,
Rheol. Acta
33
,
210
(
1994
).
19.
H.
Schiessel
and
A.
Blumen
,
J. Phys. A
26
,
5057
(
1993
).
20.
H.
Schiessel
,
R.
Metzler
,
A.
Blumen
, and
T. F.
Nonnenmacher
,
J. Phys. A
28
,
6567
(
1995
).
21.
F.
Mainardi
,
Fractional Calculus and Waves in Linear Viscoelasticity
(
Imperial College
,
London
,
2010
).
23.
A.
Stanislavsky
,
K.
Weron
, and
J.
Trzmiel
,
EPL
91
,
40003
(
2010
).
24.
J. F. C.
Kingman
,
Poisson Processes
(
Oxford University Press
,
Oxford
,
1993
).
25.
P.
Embrechts
,
C.
Kluppelberg
, and
T.
Mikosch
,
Modelling Extremal Events for Insurance and Finance
(
Springer
,
New York
,
1997
).
26.
R. W.
Wolff
,
Stochastic Modeling and the Theory of Queues
(
Prentice-Hall
,
London
,
1989
).
27.
S. B.
Lowen
and
M. C.
Teich
,
Fractal-Based Point Processes
(
Wiley
,
New York
,
2005
).
28.
A.
Blumen
,
Nuovo Cimento B
63
,
50
(
1981
).
29.
D. G.
Thomas
,
J. J.
Hopfield
, and
W. M.
Augustyniak
,
Phys. Rev.
140
,
A202
(
1965
).
30.
I.
Eliazar
and
J.
Klafter
,
Phys. Rep.
511
,
143
(
2012
).
31.
I.
Eliazar
, “
The extremal independence problem
,”
Physica A
389
,
659
(
2010
).
32.
S. M.
Ross
,
Applied Probability Models with Optimization Applications
(
Holden-Day
,
San Francisco
,
1970
).
33.
H. C.
Tijms
,
Stochastic Models: An Algorithmic Approach
(
Wiley
,
New York
,
1995
).
34.
E.
Barlow
and
F.
Proschan
,
Mathematical Theory of Reliability
(
SIAM
,
Providence
,
1996
).
35.
S. M.
Ross
,
Simulation
(
Academic
,
Amsterdam
,
2006
).
36.
E. W.
Montroll
and
G. H.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
37.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
38.
J.
Klafter
and
I. M.
Sokolov
,
Phys. World
18
,
29
(
2005
).
39.
M. F.
Shlesinger
,
J.
Klafter
, and
Y. M.
Wong
,
J. Stat. Phys.
27
,
499
(
1982
).
40.
M. F.
Shlesinger
and
J.
Klafter
,
Phys. Rev. Lett.
54
,
2551
(
1985
).
41.
M. F.
Shlesinger
,
J.
Klafter
, and
B.
West
,
Phys. Rev. Lett.
58
,
1100
(
1987
).
42.
K.
Falconer
,
Fractal Geometry: Mathematical Foundations and Applications
(
Wiley
,
Chichester
,
1990
).
43.
R.
Kohlrausch
,
Pogg. Ann. Phys. Chem.
91
,
179
(
1854
);
R.
Kohlrausch
,
Pogg. Ann. Phys. Chem.
119
,
337
(
1863
).
44.
G.
Williams
and
D. C.
Watts
,
Trans. Faraday Soc.
66
,
80
(
1970
).
45.
W. T.
Coffey
and
Yu. P.
Kalmykov
,
Fractals, Diffusions and Relaxation in Disordered Systems
(
Wiley-Interscience
,
New York
,
2006
).
46.
B. B.
Mandelbrot
,
Fractals and Scaling in Finance
(
Springer
,
New York
,
1997
).
47.
M.
Mitzenmacher
,
Internet Math.
1
,
226
(
2004
).
48.
V.
Pareto
,
Cours d’économie Politique
(
Droz
,
Geneva
,
1896
).
49.
M. E. J.
Newman
,
Contemp. Phys.
46
,
323
(
2005
).
50.
A.
Clauset
,
C. R.
Shalizi
, and
M. E. J.
Newman
,
SIAM Rev.
51
,
661
(
2009
).
51.
B.
Mandelbrot
, and
N. N.
Taleb
, in
The Known, the Unknown and the Unknowable in Financial Institutions
, edited by
F.
Diebold
,
N.
Doherty
and
R.
Herring
(
Princeton University Press
,
Princeton
,
2010
), pp.
47
58
.
52.
I.
Eliazar
and
M. H.
Cohen
,
Physica A
392
,
27
(
2013
).
53.
S. F.
Burlatsky
,
G. S.
Oshanin
, and
A. V.
Mogutov
,
Phys. Rev. Lett.
65
,
3205
(
1990
).
You do not currently have access to this content.