Based upon a finite-element “coarse-grained molecular dynamics” (CGMD) procedure, as applied to a simple atomistic 2D model of graphene, we formulate a new coarse-grained model for graphene mechanics explicitly accounting for dissipative effects. It is shown that, within the Mori-projection operator formalism, the reversible part of the dynamics is equivalent to the finite temperature CGMD-equations of motion, and that dissipative contributions to CGMD can also be included within the Mori formalism. The CGMD nodal momenta in the present graphene model display clear non-Markovian behavior, a property that can be ascribed to the fact that the CGMD-weighting function suppresses high-frequency modes more effectively than, e.g., a simple center of mass (COM) based CG procedure. The present coarse-grained graphene model is also shown to reproduce the short time behavior of the momentum correlation functions more accurately than COM-variables and it is less dissipative than COM-CG. Finally, we find that, while the intermediate time scale represented directly by the CGMD variables shows a clear non-Markovian dynamics, the macroscopic dynamics of normal modes can be approximated by a Markovian dissipation, with friction coefficients scaling like the square of the wave vector. This opens the way to the development of a CGMD model capable of describing the correct long time behavior of such macroscopic normal modes.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
2.
V.
Sazonova
,
Y.
Yaish
,
H.
Ustunel
,
D.
Roundy
,
T. A.
Arias
, and
P. L.
McEuen
,
Nature (London)
431
,
284
(
2004
).
3.
C. Y.
Li
and
T. W.
Chou
,
Appl. Phys. Lett.
84
,
121
(
2004
).
4.
P.
Poncharal
,
Z. L.
Wang
,
D.
Ugarte
, and
W. A.
de Heer
,
Science
283
,
1513
(
1999
).
5.
Y.
Cheng
,
X.
Shi
,
N. M.
Pugno
, and
H.
Gao
,
Physica E
44
,
955
(
2012
).
7.
A. A.
Kiselev
and
G. J.
Iafrate
,
Phys. Rev. B
77
,
205436
(
2008
).
8.
H.
Jiang
,
M. F.
Yu
,
B.
Liu
, and
Y.
Huang
,
Phys. Rev. Lett.
93
,
185501
(
2004
).
9.
P. A.
Greaney
,
G.
Lani
,
G.
Cicero
, and
J. C.
Grossman
,
Nano Lett.
9
,
3699
(
2009
).
10.
O.
Liba
,
D.
Kauzlarić
,
Z. R.
Abrams
,
Y.
Hanein
,
A.
Greiner
, and
J. G.
Korvink
,
Mol. Simul.
34
,
737
(
2008
).
11.
O.
Liba
,
Y.
Hanein
,
D.
Kauzlarić
,
A.
Greiner
, and
J. G.
Korvink
,
Int. J. Multiscale Comp. Eng.
6
,
549
(
2008
).
12.
M. J.
Buehler
,
J. Mater. Res.
21
,
2855
(
2006
).
13.
D.
Kauzlarić
,
J. T.
Meier
,
P.
Español
,
S.
Succi
,
A.
Greiner
, and
J. G.
Korvink
,
J. Chem. Phys.
134
,
064106
(
2011
).
14.
D.
Kauzlarić
,
P.
Español
,
A.
Greiner
, and
S.
Succi
,
Macromol. Theory Simul.
20
,
526
(
2011
).
15.
R. E.
Rudd
and
J. Q.
Broughton
,
Phys. Rev. B
72
,
144104
(
2005
).
16.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
17.
R.
Kobayashi
,
T.
Nakamura
, and
S.
Ogata
,
Int. J. Numer. Methods Eng.
83
,
249
(
2010
).
18.
Y.
Inoue
,
R.
Kobayashi
,
S.
Ogata
, and
T.
Gotoh
,
Comput. Model. Eng. Sci.
63
(
2
),
137
(
2010
).
19.
R. E.
Rudd
,
Mater. Res. Soc. Symp. Proc.
695
,
499
504
(
2001
).
20.
W.
Cai
,
M.
de Koning
,
V. V.
Bulatov
, and
S.
Yip
,
Phys. Rev. Lett.
85
,
3213
(
2000
).
21.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
22.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
23.
O. L.
Blakslee
,
D. G.
Proctor
,
E. J.
Seldin
,
G. B.
Spence
, and
T.
Weng
,
J. Appl. Phys.
41
,
3373
(
1970
).
24.
E.
Fermi
,
J.
Pasta
, and
S.
Ulam
,
Collected Papers of Enrico Fermi
(
University of Chicago Press
,
1965
), Vol.
2
, p.
977
.
25.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
26.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
27.
P.
Español
and
H. C.
Öttinger
,
Z. Phys. B
90
,
377
(
1993
).
28.
H.
Grabert
, “
Projection operator techniques in nonequilibrium statistical mechanics
,”
Springer Tracts in Modern Physics
(
Springer
,
Berlin
,
1982
).
29.
C.
Hijón
,
P.
Español
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
,
Faraday Discuss.
144
,
301
(
2010
).
30.
J. G.
Kirkwood
,
J. Chem. Phys.
14
,
180
(
1946
).
31.
P.
Español
and
I.
Zúñiga
,
J. Chem. Phys.
98
,
574
(
1993
).
32.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Harcourt
,
Orlando
,
1976
).
33.
G. H.
Golub
and
C. F. V.
Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins
,
Baltimore
,
1996
).
34.
J. P.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
Dover
,
1991
).
35.
bwGRiD, see http://www.bw-grid.de, member of the German D-Grid initiative, funded by the Ministry for Education and Research (Bundesministerium fuer Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Wuerttemberg (Ministerium fuer Wissenschaft, Forschung und Kunst Baden-Wuerttemberg).
You do not currently have access to this content.