In this work, we develop an approach to treat correlated many-electron dynamics, dressed by the presence of a finite-temperature harmonic bath. Our theory combines a small polaron transformation with the second-order time-convolutionless master equation and includes both electronic and system-bath correlations on equal footing. Our theory is based on the ab initio Hamiltonian, and is thus well-defined apart from any phenomenological choice of basis states or electronic system-bath coupling model. The equation-of-motion for the density matrix we derive includes non-Markovian and non-perturbative bath effects and can be used to simulate environmentally broadened electronic spectra and dissipative dynamics, which are subjects of recent interest. The theory also goes beyond the adiabatic Born-Oppenheimer approximation, but with computational cost scaling such as the Born-Oppenheimer approach. Example propagations with a developmental code are performed, demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system. An untransformed version of the theory is also presented to treat more general baths and larger systems.

1.
J. T.
Devreese
,
Polarons in Ionic Crystals and Polar Semiconductors: Antwerp Advanced Study Institute 1971 on Fröhlich Polarons and Electron-Phonon Interaction in Polar Semiconductors
,
NATO Advanced Study Institutes Series
(
North-Holland
,
1972
).
2.
Y.
Dahnovsky
, “
Ab initio electron propagators in molecules with strong electron-phonon interaction. I. Phonon averages
,”
J Chem. Phys.
126
,
234111
(
2007
).
3.
Y.
Dahnovsky
, “
Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function
,”
J. Chem. Phys.
127
,
014104
(
2007
).
4.
I. G.
Lang
and
Y. A.
Firsov
,
Sov. Phys. JETP
16
,
1301
(
1962
).
5.
A.
Pereverzev
and
E. R.
Bittner
, “
Time-convolutionless master equation for mesoscopic electron-phonon systems
,”
J. Chem. Phys.
125
,
104906
(
2006
).
6.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
, “
Theory of coherent resonance energy transfer
,”
J. Chem. Phys.
129
,
101104
(
2008
).
7.
S.
Jang
, “
Theory of coherent resonance energy transfer for coherent initial condition
,”
J. Chem. Phys.
131
,
164101
(
2009
).
8.
A. W.
Chin
,
J.
Prior
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Generalized polaron ansatz for the ground state of the sub-ohmic spin-boson model: An analytic theory of the localization transition
,”
Phys. Rev. Lett.
107
,
160601
(
2011
).
9.
A.
Nazir
, “
Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics
,”
Phys. Rev. Lett.
103
,
146404
(
2009
).
10.
D. P. S.
McCutcheon
and
A.
Nazir
, “
Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation
,”
J. Chem. Phys.
135
,
114501
(
2011
).
11.
C. K.
Lee
,
J.
Moix
, and
J.
Cao
, “
Accuracy of second order perturbation theory in the polaron and variational polaron frames
,”
J. Chem. Phys.
136
,
204120
(
2012
).
12.
R.
Silbey
and
R. A.
Harris
, “
Variational calculation of the dynamics of a two level system interacting with a bath
,”
J. Chem. Phys.
80
,
2615
2617
(
1984
).
13.
H. J.
Monkhorst
, “
Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method
,”
Phys. Rev. A
36
,
1544
1561
(
1987
).
14.
D. A.
Micha
, “
Time-dependent many-electron treatment of electronic energy and charge transfer in atomic collisions
,”
J. Phys. Chem. A
103
,
7562
7574
(
1999
).
15.
A. A.
Dzhioev
and
D. S.
Kosov
, “
Super-fermion representation of quantum kinetic equations for the electron transport problem
,”
J. Chem. Phys.
134
,
044121
(
2011
).
16.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics: Controlled dipole switching in lithium cyanide
,”
J. Chem. Phys.
123
,
074105
(
2005
).
17.
J. C.
Tremblay
,
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Time-dependent response of dissipative electron systems
,”
Phys. Rev. A
81
,
063420
(
2010
).
18.
T.
Petrenko
and
F.
Neese
, “
Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy
,”
J. Chem. Phys.
127
,
4319
(
2007
).
19.
K.
Kristensen
,
J.
Kauczor
,
A. J.
Thorvaldsen
,
P.
Jørgensen
,
T.
Kjærgaard
, and
A.
Rizzo
, “
Damped response theory description of two-photon absorption
,”
J. Chem. Phys.
134
,
214104
(
2011
).
20.
C. T.
Chapman
,
W.
Liang
, and
X.
Li
, “
Open-system electronic dynamics and thermalized electronic structure
,”
J. Chem. Phys.
134
,
024118
(
2011
).
21.
J. A.
Parkhill
,
D. G.
Tempel
, and
A.
Aspuru-Guzik
, “
Exciton coherence lifetimes from electronic structure
,”
J. Chem. Phys.
136
,
104510
(
2012
).
22.
S. M.
Morton
and
L.
Jensen
, “
A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption
,”
J. Chem. Phys.
135
,
134103
(
2011
).
23.
D. G.
Tempel
,
M. A.
Watson
,
R.
Olivares-Amaya
, and
A.
Aspuru-Guzik
, “
Time-dependent density functional theory of open quantum systems in the linear-response regime
,”
J. Chem. Phys.
134
,
074116
(
2011
).
24.
E. J.
Heller
, “
Time-dependent approach to semiclassical dynamics
,”
J. Chem. Phys.
62
,
1544
1555
(
1975
).
25.
A. E.
Orel
and
W. H.
Miller
, “
Collision induced absorption spectra for gas phase chemical reactions in a high power ir laser field
,”
J. Chem Phys.
72
,
5139
5144
(
1980
).
26.
M.
Ben-Nun
and
T. J.
Martínez
, “
Electronic absorption and resonance raman spectroscopy from ab initio quantum molecular dynamics
,”
J. Phys. Chem. A
103
,
10517
10527
(
1999
).
27.
A. L.
Kaledin
and
W. H.
Miller
, “
Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels
,”
J. Chem. Phys.
118
,
7174
7182
(
2003
).
28.
K. G.
Kay
, “
Semiclassical initial value treatments of atoms and molecules
,”
Annu. Rev. Phys. Chem.
56
,
255
280
(
2005
).
29.
J.
Tatchen
and
E.
Pollak
, “
Semiclassical on-the-fly computation of the S0 → S1 absorption spectrum of formaldehyde
,”
J. Chem. Phys.
130
,
041103
(
2009
).
30.
M.
Ceotto
,
S.
Valleau
,
G. F.
Tantardini
, and
A.
Aspuru-Guzik
, “
First principles semiclassical calculations of vibrational eigenfunctions
,”
J. Chem. Phys.
134
,
234103
(
2011
).
31.
T.
Holstein
, “
Studies of polaron motion. Part I: The molecular-crystal model
,”
Ann. Phys. (N.Y.)
8
,
325
342
(
1959
).
32.
J.
Gilmore
and
R. H.
McKenzie
, “
Quantum dynamics of electronic excitations in biomolecular chromophores: Role of the protein environment and solvent
,”
J. Phys. Chem. A
112
,
2162
2176
(
2008
).
33.
H.-P.
Breuer
and
F.
Petruccioni
,
Theory of Open Quantum Systems
(
Oxford University Press
,
2002
).
34.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
2000
).
35.
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
, “
A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations
,”
J. Stat. Phys.
17
,
171
187
(
1977
).
36.
H.-P.
Breuer
,
B.
Kappler
, and
F.
Petruccione
, “
The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence
,”
Ann. Phys.
291
,
36
70
(
2001
).
37.
F. J.
Dyson
, “
The use of the Tamm-Dancoff method in field theory
,”
Phys. Rev.
90
,
994
994
(
1953
).
38.
O.
Walter
and
J.
Schirmer
, “
The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) for atoms
,”
J. Phys. B
14
,
3805
(
1981
).
39.
M.
Tohyama
, “
Correlated ground state and E2 giant resonance built on it
,”
Prog. Theor. Phys.
94
,
147
150
(
1995
).
40.
J. A.
Parkhill
and
M.
Head-Gordon
, “
A sparse framework for the derivation and implementation of fermion algebra
,”
Mol. Phys.
108
,
513
(
2010
).
41.
R.
Alicki
,
M.
Fannes
, and
M.
Pogorzelska
, “
Quantum generalized subsystems
,”
Phys. Rev. A
79
,
052111
(
2009
).
42.
Usually, the TCL is applied to a phenomenological density operator and 1-body Liouvillian. Here, we will apply it to a one-particle transition density operator. The projection operator technique and quantum Ehrenfest theorem required for the TCL both carry over.
43.
Since the perturbation is a two-particle operator, we cannot trivially diagonalize the first order term, as one does when working with tight-binding type Hamiltonians.
44.
We leave X operators in the interaction picture while pulling electronic operators into the Schodinger picture throughout the text.
45.
L.
Greenman
,
P. J.
Ho
,
S.
Pabst
,
E.
Kamarchik
,
D. A.
Mazziotti
, and
R.
Santra
, “
Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes
,”
Phys. Rev. A
82
,
023406
(
2010
).
46.
W. M.
Alberico
,
A.
De Pace
,
A.
Drago
, and
A.
Molinari
, “
Second-order effects in the nuclear-response functions
,”
Riv. Nuovo Cimento
14
,
1
46
(
1991
).
47.
J.
Simons
and
W. D.
Smith
, “
Theory of electron affinities of small molecules
,”
J. Chem. Phys.
58
,
4899
4907
(
1973
).
48.
P.
Jørgensen
and
J.
Simons
, “
A complete treatment of the electron propagator through third order
,”
J. Chem. Phys.
63
,
5302
5304
(
1975
).
49.
S.
Hirata
, “
Third- and fourth-order perturbation corrections to excitation energies from configuration interaction singles
,”
J. Chem. Phys.
122
,
094105
(
2005
).
50.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
, “
Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation
,”
J. Chem. Phys.
135
,
154112
(
2011
).
51.
B. H.
Brandow
, “
Linked-cluster expansions for the nuclear many-body problem
,”
Rev. Mod. Phys.
39
,
771
828
(
1967
).
52.
See supplementary material at http://dx.doi.org/10.1063/1.4762441 for a complete enumeration of terms and results of different treatments of the initial condition.
53.
This same issue occurs in SOPPA and CIS(D). Since CIS(D) is derived from diagonalization of the response matrix, this problem appears as a non-Hermitian effective response matrix instead of time-irreversibility, but these issues are the same.
54.
T.
Yanai
and
G.
Kin-Lic Chan
, “
Canonical transformation theory from extended normal ordering
,”
J. Chem. Phys.
127
,
104107
(
2007
).
55.
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
,
2395
(
1982
).
56.
Given in the supplementary material (Ref. 52).
57.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
58.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model cc2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
59.
M.
Head-Gordon
,
M.
Oumi
, and
D.
Maurice
, “
Quasidegenerate second-order perturbation corrections to single-excitation configuration interaction
,”
Molecular Physics
96
,
593
602
(
1999
).
60.
P.
Myöhänen
,
A.
Stan
,
G.
Stefanucci
, and
R.
van Leeuwen
, “
A many-body approach to quantum transport dynamics: Initial correlations and memory effects
,”
EPL
84
,
67001
(
2008
).
61.
A. G.
Hall
, “
Non-equilibrium green functions: Generalized Wick's theorem and diagrammatic perturbation with initial correlations
,”
J. Phys. A
8
,
214
(
1975
).
62.
P.
Danielewicz
, “
Quantum theory of nonequilibrium processes
, I,”
Ann. Phys.
152
,
239
304
(
1984
).
63.
M.
Bonitz
,
D.
Kremp
, and
D.
Semkat
, “
Kadanoff-Baym equations with initial correlations
,” in
Progress in Nonequilibrium Green's Functions
(
World Scientific
,
2003
), Chap. 5, pp.
34
44
.
64.
N. E.
Dahlen
and
R. V.
Leeuwen
, “
Solving the kadanoff-baym equations for inhomogeneous systems: Application to atoms and molecules
,”
Phys. Rev. Lett.
98
,
153004
(
2007
).
65.
V. G.
Morozov
and
G.
Röpke
, “
The “mixed” Green's function approach to quantum kinetics with initial correlations
,”
Ann. Phys.
278
,
127
177
(
1999
).
66.
M.
Garny
and
M. M.
Müller
, “
Kadanoff-Baym equations with non-Gaussian initial conditions: The equilibrium limit
,”
Phys. Rev. D
80
,
085011
(
2009
).
67.
R.
van Leeuwen
and
G.
Stefanucci
, “
Wick theorem for general initial states
,”
Phys. Rev. B
85
,
115119
(
2012
).
68.
K.
Balzer
,
S.
Bauch
, and
M.
Bonitz
, “
Efficient grid-based method in nonequilibrium Green's function calculations: Application to model atoms and molecules
,”
Phys. Rev. A
81
,
022510
(
2010
).
69.
W.
Kutzelnigg
and
D.
Mukherjee
, “
Normal order and extended wick theorem for a multiconfiguration reference wave function
,”
J. Chem. Phys.
107
,
432
449
(
1997
).
70.
A related technique was recently develop for the Green's function (Ref. 67).
71.
C.
Uchiyama
,
M.
Aihara
,
M.
Saeki
, and
S.
Miyashita
, “
Master equation approach to line shape in dissipative systems
,”
Phys. Rev. E
80
,
021128
(
2009
).
72.
C.
Timm
, “
Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order
,”
Phys. Rev. B
83
,
115416
(
2011
).
73.
J.
Oddershede
and
P.
Jorgenson
, “
An order analysis of the particle-hole propagator
,”
J. Chem. Phys.
66
,
1541
(
1977
).
74.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Oschsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Want
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in methods and algorithms in a modern quantum chemistry program package
,”
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
75.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
, “
PSI3: An open-source ab initio electronic structure package
,”
J. Comp. Chem.
28
,
1610
1616
(
2007
).
76.
Coordinates: ((Bohr) H: −1, 0, 0. ; H: 1, 0, 0 ; H: −2.17557, 1.61803, 0; H: 2.17557, 1.61803, 0) and (B (Å): −0.26429, 0.47149, 0 H: 0.84371, 0.47149, −0.40000; H: −0.81829, 1.43104, 0.4; H: −0.81829, −0.48807, 0.4).
77.
D.
Casanova
,
L. V.
Slipchenko
,
A. I.
Krylov
, and
M.
Head-Gordon
, “
Double spin-flip approach within equation-of-motion coupled cluster and configuration interaction formalisms: Theory, implementation, and examples
,”
J. Chem. Phys.
130
,
044103
(
2009
).
78.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
79.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
80.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
81.
Coordinates: ((Bohr) H: −0.45 0. 0.0; H: .45 0. 0.0; H −0.48296291 0. 5.0; H 0.48296291 0. 5.2588190).
82.
Geometry (Angstrom): F: 0.979002, −0.062874, −0.111271; C, 2.253554, 0.247708, −0.293548; F: 2.903831, −0.802928, −0.770347; C: 2.791571,1.423625, −0.041291; H: 3.843081, 1.582482, −0.222345; H: 2.177490, 2.222097, 0.344802, Basis: 6–31+G* on C, 3–21G on all other atoms.
83.
P.
Limao-Vieira
,
E.
Vasekova
,
B. N.
Raja Sekhar
,
N. J.
Mason
, and
S. V.
Hoffmann
, “
VUV electronic state spectroscopy of 1,1-difluoroethene and difluorochloromethane by high resolution synchrotron radiation
,”
Phys. Chem. Chem. Phys.
8
,
4766
4772
(
2006
).
84.
J. E.
Subotnik
, “
Augmented Ehrenfest dynamics yields a rate for surface hopping
,”
J. Chem. Phys.
132
,
134112
(
2010
).
85.
E. J.
Heller
, “
Dynamic tunneling and molecular spectra
,”
J. Phys. Chem.
99
,
2625
2634
(
1995
).
86.
P.-O.
Löwdin
, “
Some current problems in theoretical chemical physics to be solved
,”
Int. J. Quantum Chem.
51
,
473
485
(
1994
).
87.
E.
Collini
and
G. D.
Scholes
, “
Coherent intrachain energy migration in a conjugated polymer at room temperature
,”
Science
323
,
369
373
(
2009
).
88.
D.
Hayes
,
J.
Wen
,
G.
Panitchayangkoon
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Robustness of electronic coherence in the Fenna-Matthews-Olson complex to vibronic and structural modifications
,”
Faraday Discuss.
150
,
459
469
(
2011
).
89.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
, “
Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation
,”
J. Chem. Phys.
127
,
214307
(
2007
).
90.
S.
Jang
,
J.
Cao
, and
R. J.
Silbey
, “
On the temperature dependence of molecular line shapes due to linearly coupled phonon bands
,”
J. Phys. Chem. B
106
,
8313
8317
(
2002
).

Supplementary Material

You do not currently have access to this content.