Powerful approximate methods for propagating the density matrix of complex systems that are conveniently described in terms of electronic subsystem states and nuclear degrees of freedom have recently been developed that involve linearizing the density matrix propagator in the difference between the forward and backward paths of the nuclear degrees of freedom while keeping the interference effects between the different forward and backward paths of the electronic subsystem described in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate that different approaches to developing the linearized approximation to the density matrix propagator can yield a mean-field like approximate propagator in which the nuclear variables evolve classically subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopting an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory surface hopping methods. We show how these different short time approximations can be implemented iteratively to achieve accurate, stable long time propagation and explore their implementation in different representations. The merits of the different approximate quantum dynamics methods that are thus consistently derived from the density matrix propagator starting point and different partial linearization approximations are explored in various model system studies of multi-state scattering problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate the capabilities of these different types of approximations for treating non-adiabatic electronic relaxation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics at short times to long time thermal equilibration in the presence of a model dissipative environment.

1.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
);
in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
G.
Ciccotti
,
B.
Berne
, and
D.
Coker
(
World Scientific
,
Dordrecht
,
1998
), p.
489
.
2.
G.
Stock
and
M.
Thoss
, “
Mixed quantum-classical description of the dynamics at conical intersections
,” in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2003
).
3.
4.
G.
Stock
,
J. Chem. Phys.
103
,
1561
(
1995
).
5.
D. F.
Coker
and
X.
Li
,
J. Chem. Phys.
102
,
496
(
1995
).
6.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
107
,
6230
(
1997
).
7.
N.
Shenvi
,
J. E.
Subotink
, and
W.
Yang
,
J. Chem. Phys.
135
,
024101
(
2011
);
[PubMed]
N.
Shenvi
,
J. E.
Subotink
, and
W.
Yang
,
J. Chem. Phys.
134
,
144102
(
2011
).
[PubMed]
8.
Y.
Wu
and
M. F.
Herman
,
J. Chem. Phys.
123
,
144106
(
2005
);
[PubMed]
Y.
Wu
and
M. F.
Herman
,
J. Chem. Phys.
125
,
154116
(
2006
).
[PubMed]
9.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
10.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
,
J. Chem. Phys.
127
,
084114
(
2007
).
11.
B. R.
Landry
and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
191191
(
2011
);
J. E.
Subotnik
and
N.
Shenvi
,
J. Chem. Phys.
134
,
244114
(
2011
);
[PubMed]
N.
Shenvi
, and
J. E.
Subotnik
,
J. Chem. Phys.
134
,
024105
(
2011
).
[PubMed]
12.
The accurate adiabatic population, can only be obtained from the “binned” coefficients that count the fraction of trajectories in a particular state. The actual electronic coefficients obtained from the evolution of time dependent Schördinger equation, however, do not give same population as the binned coefficients and generally give an inaccurate picture of the evolution of the adiabatic populations.2 
13.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
4667
(
1994
).
14.
Y.
Volobev
,
M. D.
Hack
,
M. S.
Topaler
, and
D. G.
Truhlar
,
J. Chem. Phys.
112
,
9716
(
2000
);
M. D.
Hack
, and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
7917
(
2000
).
15.
O.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
825
(
1997
).
16.
S. A.
Fischer
,
C. T.
Chapman
, and
X.
Li
,
J. Chem. Phys.
135
,
144102
(
2011
).
17.
J.
Bader
and
B.
Berne
,
J. Chem. Phys.
100
,
8359
(
1994
);
B.
Berne
,
J.
Bader
, and
P.
Hanggi
,
J. Chem. Phys.
104
,
1111
(
1996
);
S.
Egorov
,
E.
Rabani
, and
B.
Berne
,
J. Phys. Chem. A
103
,
10978
(
1999
).
18.
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Phys.
122
,
094102
(
2005
);
[PubMed]
P. V.
Parandekar
and
J. C.
Tully
,
J. Chem. Theory. Comput.
2
,
229
(
2006
).
[PubMed]
19.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
);
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
);
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
20.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
);
[PubMed]
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
108
,
6109
(
2004
).
21.
S.
Bonella
and
D. F.
Coker
,
J. Chem. Phys.
122
,
194102
(
2005
);
[PubMed]
S.
Bonella
,
D.
Montemayor
and
D. F.
Coker
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6715
(
2005
).
[PubMed]
22.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
135
,
201101
(
2011
).
23.
P.
Huo
and
D. F.
Coker
,
Mol. Phys.
110
,
1035
(
2012
).
24.
E. R.
Dunkel
,
S.
Bonella
, and
D. F.
Coker
,
J. Chem. Phys.
129
,
114106
(
2008
).
25.
S.
Bonella
and
D. F.
Coker
,
J. Chem. Phys.
118
,
4370
(
2003
).
26.
S.
Bonella
and
D. F.
Coker
, in
Quantum Dynamics of Complex Molecular Systems
,
Lectures in Chemical Physics Vol. 83
, edited by
D.
Micha
and
I.
Burghardt
(
Springer
,
Berlin
,
2006
), p.
321
.
27.
D.
Mac Kernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Chem. Phys.
116
,
2346
(
2002
);
D.
Mac Kernan
,
G.
Ciccotti
, and
R.
Kapral
,
J. Phys. Chem. B
112
,
424
(
2008
).
[PubMed]
28.
E. A.
Coronado
,
J.
Xing
, and
W. H.
Miller
,
Chem. Phys. Lett.
349
,
512
(
2001
).
29.
S.
Bonella
and
D. F.
Coker
,
J. Chem. Phys.
114
,
7778
(
2001
).
30.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
,
J. Chem. Phys.
136
,
084101
(
2012
).
31.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
32.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
111
,
77
(
1999
).
33.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
,
12179
(
2003
);
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
34.
J.
Vanicek
,
Phys. Rev. E
70
,
055201
R
(
2004
).
35.
N.
Ananth
and
T. F.
Miller
III
,
J. Chem. Phys.
133
,
234103
(
2010
);
[PubMed]
Z.
Ma
and
D. F.
Coker
,
J. Chem. Phys.
128
,
244108
(
2008
).
[PubMed]
36.
The idea of focusing25 is, instead of sampling the initial conditions for the mapping variables, we can find the steepest descent points of integrations over these variables by optimizing the integrand
${1\over 4}(q_{n_{0}}+ip_{n_{0}})(q_{n_{0}}\break -ip_{n_{0}})e^{-{1\over 2}\sum _{\beta } (q_{\beta 0}^2+p_{\beta 0}^2)}$
14(qn0+ipn0)(qn0ipn0)e12β(qβ02+pβ02)
is
$q_{n_{0}}^2+p_{n_{0}}^2=2$
qn02+pn02=2
, with similar for the backward mapping variables, and simply these single points in mapping variable phase space. So the idea is to replace the sampling of the gaussian distribution of the mapping variable
$e^{-{1\over 2}\sum _{\beta } (q_{\beta 0}^2+p_{\beta 0}^2)}$
e12β(qβ02+pβ02)
as a delta function
$\delta (\lbrace q_{n_{0}}^2+p_{n_{0}}^2\rbrace -2)$
δ({qn02+pn02}2)
by this single point approximation.
37.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
108
,
7516
(
1998
).
38.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
39.
P.
Huo
,
S.
Bonella
,
L.
Chen
, and
D. F.
Coker
,
Chem. Phys.
370
,
87
(
2010
).
40.
W. H.
Miller
and
C. W.
McCurdy
,
J. Chem. Phys.
69
,
5163
(
1978
);
C. W.
McCurdy
,
H. D.
Meyer
, and
W. H.
Miller
,
J. Chem. Phys.
70
,
3177
(
1979
).
41.
E.
Martin-Fierro
and
E.
Pollak
,
J. Chem. Phys.
126
,
164108
(
2007
).
42.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
,
J. Chem. Phys.
129
,
084102
(
2008
);
[PubMed]
A.
Nassimi
and
R.
Kapral
,
Can. J. Chem.
87
,
880
(
2009
).
43.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
6346
(
1997
).
44.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
45.
H.
Wang
,
M.
Thoss
,
K. L.
Sorge
,
R.
Gelabert
,
X.
Giménez
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
2562
(
2001
).
46.
J.
Subotnik
,
J. Chem. Phys.
132
,
134112
(
2010
).
47.
G.
Tao
and
W. H.
Miller
,
J. Chem. Phys.
130
,
184108
(
2009
).
48.
J.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
49.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
50.
R.
Egger
and
C. H.
Mak
,
Phys. Rev. B
50
,
15210
(
1994
).
51.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
52.
A.
Ishizaki
and
G. R.
Fleming
,
J. Phys. Chem. B
115
,
6227
(
2011
).
53.
X.
Chen
and
R. J.
Silbey
,
J. Chem. Phys.
132
,
204503
(
2010
).
54.
S.
Bonella
,
G.
Ciccotti
, and
R.
Kapral
,
Chem. Phys. Lett.
484
,
399
(
2010
).
55.
C.-Y.
Hsieh
and
R.
Kapral
,
J. Chem. Phys.
137
,
22A507
(
2012
).
56.
L. S.
Shulman
,
Techniques and Applications of Path Integration
(
Wiley
,
New York
,
1981
).
57.
This structure does not come as a surprise, since it is a direct consequence of the nature of the non-adiabatic coupling in the chosen basis. Quantum mechanically, transitions among different electronic states are governed by the operator
${\hat{\Lambda }}_{\lambda \mu }$
Λ̂λμ
, introduced in Eq. (A3), that contains the same kind of coupling between the nuclear momentum and position operators.
You do not currently have access to this content.