We performed molecular dynamics simulations and theoretical analysis of nanoparticle pulling off from adhesive substrates. Our theoretical model of nanoparticle detachment is based on the Kramers' solution of the stochastic barrier crossing in effective one-dimensional potential well. The activation energy, ΔE, for nanoparticle detachment first decreases linearly with increasing the magnitude of the applied force, f, then it follows a power law ΔE ∝ (f* − f)3/2 as magnitude of the pulling force f approaches a critical detachment force value, f*. These two different regimes in activation energy dependence on magnitude of the applied force are confirmed by analyzing nanoparticle detachment in effective one-dimensional potential obtained by weighted histogram analysis method. Simulations show that detachment of nanoparticle proceeds through neck formation such that magnitude of the activation energy is determined by balancing surface energy of the neck connecting particle to a substrate with elastic energy of nanoparticle deformation. In this regime the activation energy at zero applied force, ΔE0, for nanoparticle with radius, Rp, shear modulus, G, surface energy, γp, and work of adhesion, W, is a universal function of the dimensionless parameter δ ∝γpW−2/3(GRp)−1/3. Simulation data are described by a scaling function |$\Delta E_0 \propto \gamma _p^{5/2} R_p^{1/2} G^{ - 3/2} \delta ^{ - 3.75}$|ΔE0γp5/2Rp1/2G3/2δ3.75. Molecular dynamics simulations of nanoparticle detachment show that the Kramers' approach fails in the vicinity of the critical detachment force f* where activation energy barrier becomes smaller than the thermal energy kBT. In the interval of the pulling forces f > f* nanoparticle detachment becomes a deterministic process.

1.
A. J.
Crosby
and
K. R.
Shull
,
J. Polym. Sci., Part B: Polym. Phys.
37
,
3455
(
1999
).
2.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quere
,
Capillarity and Wetting Phenomena
(
Springer
,
New York
,
2002
).
3.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
2003
).
4.
E.
Barthel
,
J. Phys. D: Appl. Phys.
41
,
163001
(
2008
).
5.
J.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1992
).
6.
F.
Podczeck
,
M.
Newton
, and
M. B.
James
,
J. Mater. Sci.
30
,
6083
(
1995
).
7.
B. N. J.
Persson
,
Sliding Friction: Physical Principles and Applications
(
Springer
,
Berlin
,
2000
).
8.
W. W.
Gerberich
and
M. J.
Cordill
,
Rep. Prog. Phys.
69
,
2157
(
2006
).
9.
N. K.
Myshkin
,
M. I.
Petrokovets
, and
A. V.
Kovalev
,
Tribol. Int.
38
,
910
(
2005
).
10.
K. R.
Shull
,
Mater. Sci. Eng. R.
36
,
1
(
2002
).
12.
D. C.
Lin
and
F.
Horkay
,
Soft Matter
4
,
669
(
2008
).
13.
L.
Fisher
,
J. Chem. Soc. Faraday Trans.
89
,
2567
(
1993
).
14.
Y. S.
Chu
,
S.
Dufour
,
J. P.
Thiery
,
E.
Perez
, and
F.
Pincet
,
Phys. Rev. Lett.
94
,
028102
(
2005
).
15.
J. L.
Maitre
and
C. P.
Heisenberg
,
Curr. Opin. Cell Biol.
23
,
508
(
2011
).
16.
E.
Canetta
,
A.
Deperray
,
A.
Layrat
, and
C.
Verdier
,
Biorheology
42
,
321
(
2005
).
17.
G. B.
Sukhorukov
,
A.
Ferry
,
M.
Brumen
, and
H.
Mohwald
,
Phys. Chem. Chem. Phys.
6
,
4078
(
2004
).
18.
A.
Fery
,
F.
Dubreuil
, and
H.
Mohwald
,
New J. Phys.
6
,
18
(
2004
).
19.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
,
Proc. R. Soc. London, Ser. A
324
,
301
(
1971
).
20.
B. V.
Derjaguin
,
V. M.
Muller
, and
Y. P.
Toporov
,
J. Colloid Interface Sci.
53
,
314
(
1975
).
21.
D.
Maugis
,
J. Colloid Interface Sci.
150
,
243
(
1992
).
22.
D.
Maugis
and
M.
Barquins
,
J. Phys. D: Appl. Phys.
11
,
1989
(
1978
).
23.
J. A.
Greenwood
and
K. L.
Johnson
,
Philos. Mag.
43
,
697
(
1981
).
24.
J. A.
Greenwood
and
K. L.
Johnson
,
J. Colloid Interface Sci.
296
,
284
(
2006
).
25.
S. D.
Mesarovic
and
K. L.
Johnson
,
J. Mech. Phys. Solids
48
,
2009
(
2000
).
26.
G.
Haiat
,
M. C.
Phan Huy
, and
E.
Barthel
,
J. Mech. Phys. Solids
51
,
69
(
2003
).
27.
R. A.
Schapery
,
Int. J. Fract.
11
,
141
(
1975
).
28.
R. A.
Schapery
,
Int. J. Fract.
11
,
549
(
1975
).
29.
A. N.
Gent
and
J.
Schultz
,
J. Adhes.
3
,
281
(
1972
).
30.
E. H.
Lee
and
J. R. M.
Radok
,
J. Appl. Mech.
27
,
438
(
1960
).
31.
G. A. C.
Graham
,
Int. J. Eng. Sci.
3
,
27
(
1965
).
32.
K. J.
Wahl
,
A. A. S.
Asif
,
J. A.
Greenwood
, and
K. L.
Johnson
,
J. Colloid Interface Sci.
296
,
178
(
2006
).
35.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
2001
).
36.
E.
Pollak
and
P.
Talkner
,
Chaos
15
,
026116
(
2005
).
37.
E.
Evans
and
K.
Ritchie
,
Biophys. J.
72
,
1541
(
1997
).
39.
E.
Evans
and
K.
Ritchie
,
Biophys. J.
76
,
2439
(
1999
).
40.
E.
Evans
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
105
(
2001
).
41.
O. K.
Dudko
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
8795
(
2009
).
42.
O. K.
Dudko
,
G.
Hummer
, and
A.
Szabo
,
Phys. Rev. Lett.
96
,
108101
(
2006
).
43.
O. K.
Dudko
,
G.
Hummer
, and
A.
Szabo
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
15755
(
2008
).
44.
R. W.
Friddle
,
Phys. Rev. Lett.
100
,
138302
(
2008
).
45.
T.
Erdmann
and
U. S.
Schwarz
,
Phys. Rev. Lett.
92
,
108102
(
2004
).
46.
J. M. Y.
Carrillo
and
A. V.
Dobrynin
,
Langmuir
28
,
10881
(
2012
).
47.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic
,
New York
,
2002
).
48.
J. M. Y.
Carrillo
,
E.
Raphael
, and
A. V.
Dobrynin
,
Langmuir
26
,
12973
(
2010
).
49.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
50.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
16
,
1339
(
1995
).
51.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
52.
E. A.
Evans
and
D. A.
Calderwood
,
Science
316
,
1148
(
2007
).
You do not currently have access to this content.