The transient time correlation function is a standard method for measuring transport properties in simulations. It represents a special case of a more general theorem, the dissipation theorem, that indirectly calculates phase function averages though the use of the dissipation function. These indirect averages often have significantly less statistical error than direct averages. Recently, it has been demonstrated that a local version of the fluctuation theorem can be derived with a well defined deviation from the global result at sufficiently low fields. Here we show that a similar local expression can be obtained for the dissipation theorem, providing a way of determining values of phase functions by monitoring the fluctuations of phase functions in a small region of the system.

1.
M. S.
Green
, “
Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,”
J. Chem. Phys.
22
,
398
413
(
1954
).
2.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
3.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Cambridge University Press
,
2008
).
4.
B. D.
Todd
, “
Application of transient-time correlation functions to nonequilibrium molecular-dynamics simulations of elongational flow
,”
Phys. Rev. E
56
,
6723
6728
(
1997
).
5.
C.
Desgranges
and
J.
Delhommelle
, “
Molecular simulation of transport in nanopores: Application of the transient-time correlation function formalism
,”
Phys. Rev. E
77
,
027701
(
2008
).
6.
N. J.
English
,
D. A.
Mooney
, and
S.
OBrien
, “
Ionic liquids in external electric and electromagnetic fields: A molecular dynamics study
,”
Mol. Phys.
109
,
625
638
(
2011
).
7.
W.
Zhang
and
H.
Sun
, “
Bulk velocity extraction for nano-scale Newtonian flows
,”
Phys. Lett. A
376
,
1675
1678
(
2012
).
8.
D. J.
Evans
,
D. J.
Searles
, and
S. R.
Williams
, “
On the fluctuation theorem for the dissipation function and its connection with response theory
,”
J. Chem. Phys.
128
,
014504
(
2008
).
9.
D. J.
Evans
and
D. J.
Searles
, “
Equilibrium microstates which generate 2nd law violating steady-states
,”
Phys. Rev. E
50
,
1645
1648
(
1994
).
10.
D. J.
Evans
,
D. J.
Searles
, and
S. R.
Williams
, “
Dissipation and the relaxation to equilibrium
,”
J. Stat. Mech.: Theory Exp.
2009
,
P07029
.
11.
D. J.
Evans
and
D. J.
Searles
, “
The fluctuation theorem
,”
Adv. Phys.
51
,
1529
1585
(
2002
).
12.
G.
Gallavotti
, “
A local fluctuation theorem
,” in
Proceedings of the 20th IUPAP International Conference on Statistical Physics
[
Physica A
263
,
39
50
(
1999
)].
13.
G.
Ayton
,
D. J.
Evans
, and
D. J.
Searles
, “
A local fluctuation theorem
,”
J. Chem. Phys.
115
,
2033
2037
(
2001
).
14.
G.
Michel
and
D. J.
Searles
, “
A local fluctuation theorem for large systems
,” e-print arXiv:cond-mat/1208.3969v1.
15.
Note at high fields for molecular dynamic systems, a string phase can form.
16.
D. J.
Evans
and
D. J.
Searles
, “
Steady states, invariant measures, and response theory
,”
Phys. Rev. E
52
,
5839
5849
(
1995
).
17.
J.
Petravic
and
D. J.
Evans
, “
Nonlinear response for time-dependent external fields
,”
Phys. Rev. Lett.
78
,
1199
1202
(
1997
).
18.
E.
Mittag
and
D. J.
Evans
, “
Time-dependent fluctuation theorem
,”
Phys. Rev. E
67
,
026113
(
2003
).
19.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
You do not currently have access to this content.