Time-resolved photoelectron spectroscopy can obtain detailed information about the dynamics of a chemical process on the femtosecond timescale. The resulting signal from such detailed experiments is often difficult to analyze and therefore theoretical calculations are important in providing support. In this paper we continue our work on the competing pathways in the photophysics and photochemistry of benzene after excitation into the “channel 3” region [R. S. Minns, D. S. N. Parker, T. J. Penfold, G. A. Worth, and H. H. Fielding, Phys. Chem. Chem. Phys.12, 15607 (2010)]

with details of the calculations shown previously, building on a vibronic coupling Hamiltonian [T. J. Penfold and G. A. Worth, J. Chem. Phys.131, 064303 (2009)] to include the triplet manifold. New experimental data are also presented suggesting that an oscillatory signal is due to a hot band excitation. The experiments show that signals are obtained from three regions of the potential surfaces, three open channels, which are assigned with the help of simulations showing that following excitation into vibrationally excited-states of S1 the wavepacket not only crosses through the prefulvenoid conical intersection back to the singlet ground state, but also undergoes ultrafast intersystem crossing to low lying triplet states. The model is, however, not detailed enough to capture the full details of the oscillatory signal due to the hot band.

1.
A.
Toniolo
,
A. L.
Thompson
, and
T.
Martínez
,
Chem. Phys.
304
,
133
(
2004
).
2.
I. J.
Palmer
,
I. N.
Ragazos
,
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
J. Am. Chem. Soc.
115
,
673
(
1993
).
3.
S.
Kato
,
J. Chem. Phys.
88
,
3045
(
1988
).
4.
B. O.
Roos
,
K.
Andersson
, and
M. P.
Fülscher
,
Chem. Phys. Lett.
192
,
5
(
1992
).
5.
A.
Bernhardsson
,
N.
Forsberg
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
112
,
2798
(
2000
).
6.
O.
Christiansen
,
J. F.
Stanton
, and
J.
Gauss
,
J. Chem. Phys.
108
,
3987
(
1998
).
7.
L.
Lorentzon
,
P.-Å.
Malmqvist
,
M. P.
Fülscher
, and
B. O.
Roos
,
Theor. Chim. Acta
91
,
91
(
1995
).
8.
L. T.
Scott
and
M.
Jones
 Jr.
,
Chem. Rev.
72
,
181
(
1972
).
9.
D.
Bryce-Smith
and
A.
Gilbert
,
Tetrahedron
32
,
1309
(
1972
).
10.
J.
Philis
,
A.
Bolovinos
,
G.
Andritsopoulos
,
E.
Pantos
, and
P.
Tsekeris
,
J. Phys. B
14
,
3621
(
1981
).
11.
C. S.
Parmenter
,
Adv. Chem. Phys.
22
,
365
(
1972
).
12.
M.
Clara
,
T.
Hellerer
, and
H. J.
Neusser
,
Appl. Phys. B
71
,
431
(
2000
).
13.
E. N.
Lassettre
,
A.
Skerbele
,
M. A.
Dillon
, and
K. J.
Ross
,
J. Chem. Phys.
48
,
5066
(
1968
).
14.
J. H.
Callomon
,
T.
Dunn
, and
I.
Mills
,
Philos. Trans. R. Soc. London
259
,
499
(
1966
).
15.
A. L.
Sobolewski
,
C.
Woywod
, and
W.
Domcke
,
J. Chem. Phys.
98
,
5627
(
1993
).
16.
T. J.
Penfold
and
G. A.
Worth
,
J. Chem. Phys.
131
,
064303
(
2009
).
17.
D. S. N.
Parker
,
R. S.
Minns
,
T. J.
Penfold
,
G. A.
Worth
, and
H. H.
Fielding
,
Chem. Phys. Lett.
469
,
43
(
2009
).
18.
R. S.
Minns
,
D. S. N.
Parker
,
T. J.
Penfold
,
G. A.
Worth
, and
H. H.
Fielding
,
Phys. Chem. Chem. Phys.
12
,
15607
(
2010
).
19.
T. J.
Penfold
and
G. A.
Worth
,
Chem. Phys.
375
,
58
(
2010
).
20.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
21.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The Heidelberg MCTDH package: A set of programs for multi-dimensional quantum dynamics. User's Guide, Version 8,
2000
.
22.
C.
Cattarius
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
115
,
2088
(
2001
).
23.
A.
Markmann
,
G. A.
Worth
, and
L. S.
Cederbaum
,
J. Chem. Phys.
122
,
144320
(
2005
).
24.
G. A.
Worth
,
G.
Welch
, and
M. J.
Paterson
,
Mol. Phys.
104
,
1095
(
2006
).
25.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P.
Knowles
, and
P.
Palmeiri
,
Mol. Phys.
98
,
1823
(
2000
).
26.
MCTDH: Basic Theory, Extensions, and Applications to Multidimensional Quantum Dynamics
, edited by
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
VCH
,
Weinheim, Germany
,
2009
).
27.
G. A.
Worth
 et al, The MCTDH Package, Development Version 9.0,
2008
.
28.
G. H.
Atkinson
and
C. S.
Parmenter
,
J. Mol. Spectrosc.
73
,
20
(
1978
).
29.
K. G.
Spears
and
S. A.
Rice
,
J. Chem. Phys.
55
,
5561
(
1971
).
30.
A. D. G.
Nunn
 et al,
Phys. Chem. Chem. Phys.
12
,
15751
15759
(
2010
).
31.
G. A.
Worth
,
J. Photochem. Photobiol., A
190
,
190
(
2007
).
32.
L.
Goodman
,
A. G.
Ozkabak
, and
A. N.
Thakur
,
J. Phys. Chem.
95
,
9044
(
1991
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4767054 for full data set and further graphs.
34.
W. J.
Buma
,
J. H.
van der Waals
, and
M. C.
Hemert
,
J. Phys. Chem.
93
,
3733
(
1990
).
35.
J. H.
van der Waals
,
A. M. D.
Berghuis
, and
M. S.
de Groot
,
Mol. Phys.
13
,
301
(
1967
).
36.
J.
Tatchen
,
N.
Gilka
, and
C. M.
Marian
,
Phys. Chem. Chem. Phys.
9
,
5209
(
2007
).
37.
L. S.
Cederbaum
,
E.
Haller
, and
W.
Domcke
,
Solid State Commun.
35
,
879
(
1980
).
38.
G. A.
Worth
,
R.
Carley
, and
H. H.
Fielding
,
Chem. Phys.
338
,
220
(
2007
).

Supplementary Material

You do not currently have access to this content.