A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of “soft” spherical particles with separation distance r interacting through an inverse-power pair potential, ϕ = ε(σ/r)n, where ε and σ are model parameters and n is the “hardness” of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ⩾ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.

1.
E. A.
Mason
and
T. H.
Spurling
,
The Virial Equation of State
(
Pergamon
,
New York
,
1969
).
2.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
California
,
1973
).
3.
F. H.
Ree
and
W. G.
Hoover
,
J. Chem. Phys.
41
,
1635
(
1964
).
4.
J. K.
Singh
and
D. A.
Kofke
,
Phys. Rev. Lett.
92
,
220601
(
2004
).
5.
J. S. R.
Chisholm
,
Circuits Syst. Signal Process.
1
,
279
(
1982
).
6.
G. A.
Baker
,
Quantitative Theory of Critical Phenomenon
(
Academic
,
1990
), p.
228
.
7.
R. J.
Wheatley
,
J. Phys. Chem. B
109
,
7463
(
2005
).
8.
T. B.
Tan
,
A. J.
Schultz
, and
D. A.
Kofke
,
Mol. Phys.
109
,
123
(
2011
).
9.
N.
Clisby
and
B. M.
McCoy
,
J. Stat. Phys.
122
,
15
(
2006
).
10.
D. S.
Gaunt
and
G. S.
Joyce
,
J. Phys. A
13
,
L211
(
1980
).
11.
F. J.
Rogers
and
D. A.
Young
,
Phys. Rev. A
30
,
999
(
1984
).
12.
W. G.
Hoover
,
S. G.
Gray
, and
K. W.
Johnson
,
J. Chem. Phys.
55
,
1128
(
1971
).
13.
A. J.
Schultz
and
D. A.
Kofke
,
Mol. Phys.
107
,
2309
(
2009
).
14.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
23
(
1995
).
15.
D. M.
Heyes
,
S. M.
Clarke
, and
A. C.
Brańka
,
J. Chem. Phys.
131
,
203505
(
2009
).
16.
Y.
Rosenfeld
and
A.
Baram
,
J. Chem. Phys.
75
,
427
(
1981
).
17.
Y.
Song
and
E. A.
Mason
,
Phys. Rev. A
44
,
8400
(
1991
).
18.
G. A.
Baker
and
J. L.
Gammel
,
J. Math. Anal. Appl.
2
,
21
(
1961
).
19.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
McGraw-Hill
,
1978
), p.
388
.
20.
J. G.
Briano
and
E. D.
Glandt
,
Fluid Phase Equilib.
5
,
207
(
1981
).
21.
J.
Kolafa
,
S.
Labík
, and
A.
Malijevský
,
Phys. Chem. Chem. Phys.
6
,
2335
(
2004
).
22.
T.
Boublík
and
I.
Nezbeda
,
Collect. Czech. Chem. Commun.
51
,
2301
(
1986
).
23.
M. N.
Bannerman
,
L.
Lue
, and
L. V.
Woodcock
,
J. Chem. Phys.
132
,
084507
(
2010
).
24.
I. C.
Sanchez
and
J. S.
Lee
,
J. Phys. Chem. B
113
,
15572
(
2009
).
25.
J.
Tian
,
Y.
Gui
, and
A.
Mulero
,
J. Phys. Chem. B
114
,
13399
(
2010
).
26.
M.
Ončák
,
A.
Malijevský
,
J.
Kolafa
, and
S.
Labík
,
Condens. Matter Phys.
15
,
23004
(
2012
).
27.
J.
Hu
and
Y. X.
Yu
,
Phys. Chem. Chem. Phys.
11
,
9382
(
2009
).
28.
A. O.
Guerrero
and
A. B.
Bassi
,
J. Chem. Phys.
129
,
044509
(
2008
).
29.
A.
Santos
and
M. L.
de Haro
,
J. Chem. Phys.
130
,
214104
(
2009
).
30.
A. C.
Branka
and
D. M.
Heyes
,
Phys. Rev. E
74
,
031202
(
2006
).
You do not currently have access to this content.