We investigate volume phase transition in gels immersed in mixture solvents, on the basis of a three-component Flory-Rehner theory. When the selectivity of the minority solvent component to the polymer network is strong, the gel tends to shrink with an increasing concentration of the additive, regardless of whether it is good or poor. This behavior originates from the difference of the additive concentration between inside and outside the gel. We also found the gap of the gel volume at the transition point can be controlled by adding the strongly selective solutes. By dissolving a strongly poor additive, for instance, the discontinuous volume phase transition can be extinguished. Furthermore, we observed that another volume phase transition occurs far from the original transition point. These behaviors can be well explained by a simplified theory neglecting the nonlinearity of the additive concentration.

1.
P. J.
Flory
and
J.
Rehner
,
J. Chem. Phys.
11
,
512
(
1943
);
P. J.
Flory
and
J.
Rehner
,
J. Chem. Phys.
11
,
521
(
1943
).
2.
K.
Dušek
and
D.
Patterson
,
J. Polym. Sci., Part A-2.
6
,
1209
(
1968
).
3.
T.
Tanaka
,
Phys. Rev. Lett.
40
,
820
(
1978
).
4.
T.
Tanaka
,
D.
Fillmore
,
S.-T.
Sun
,
I.
Nishio
,
G.
Swislow
, and
A.
Shah
,
Phys. Rev. Lett.
45
,
1636
(
1980
).
6.
Y.
Hirokawa
and
T.
Tanaka
,
J. Chem. Phys.
81
,
6379
(
1984
).
7.
I.
Ohmine
and
T.
Tanaka
,
J. Chem. Phys.
77
,
5725
(
1982
).
8.
J.
Rička
and
T.
Tanaka
,
Macromolecules
17
,
2916
(
1984
).
9.
A.
Fernández-Nieves
,
A.
Fernández-Barbero
, and
F. J.
de las Nieves
,
J. Chem. Phys.
115
,
7644
(
2001
).
10.
T.
Amiya
,
Y.
Hirokawa
,
Y.
Hirose
,
Y.
Li
, and
T.
Tanaka
,
J. Chem. Phys.
86
,
2375
(
1987
).
11.
S.
Hirotsu
,
Y.
Hirokawa
, and
T.
Tanaka
,
J. Chem. Phys.
87
,
1392
(
1987
).
12.
T. G.
Park
and
A. S.
Hoffman
,
Macromolecules
26
,
5045
(
1993
).
13.
H.
Inomata
,
S.
Goto
,
K.
Otake
, and
S.
Saito
,
Langmuir
8
,
687
(
1992
).
14.
M.
Annaka
,
K.
Motokawa
,
S.
Sasaki
,
T.
Nakahira
,
H.
Kawasaki
,
H.
Maeda
,
Y.
Amo
, and
Y.
Tominaga
,
J. Chem. Phys.
113
,
5980
(
2000
).
15.
S.
Hirotsu
,
J. Phys. Soc. Jpn.
56
,
233
(
1987
).
16.
E.
Kokufuta
,
Y.-Q.
Zhang
,
T.
Tanaka
, and
A.
Mamada
,
Macromolecules
26
,
1053
(
1993
).
17.
H.
Kawasaki
,
S.
Sasaki
,
H.
Maeda
,
S.
Mihara
,
M.
Tokita
, and
T.
Komai
,
J. Phys. Chem.
100
,
16282
(
1996
).
18.
S.
Sasaki
,
H.
Kawasaki
, and
H.
Maeda
,
Macromolecules
30
,
1847
(
1997
).
19.
D.
Dhara
and
P. R.
Chatterji
,
Langmuir
15
,
930
(
1999
).
20.
S.
Koga
,
S.
Sasaki
, and
H.
Maeda
,
J. Phys. Chem. B
105
,
4105
(
2001
).
21.
F.
Tanaka
,
T.
Koga
, and
F. M.
Winnik
,
Phys. Rev. Lett.
101
,
028302
(
2008
).
22.
S.
Sasaki
and
H.
Maeda
,
Phys. Rev. E
54
,
2761
(
1996
).
23.
H.
Kojima
and
F.
Tanaka
,
Macromolecules
43
,
5103
(
2010
).
24.
H.
Kojima
and
F.
Tanaka
,
Soft Matter
8
,
3010
(
2012
).
25.
T.
Ishidao
,
Y.
Hishimoto
,
Y.
Iwai
, and
Y.
Araki
,
Colloid Polym. Sci.
272
,
1313
(
1994
).
26.
V. V.
Vasilevskaya
,
V. A.
Ryabina
,
S. G.
Starodubtsev
, and
A. R.
Khokhlov
,
Polym. Sci. U.S.S.R.
31
,
784
(
1989
).
27.
T.
Iwatsubo
,
K.
Ogasawara
,
A.
Yamasaki
,
T.
Masuoka
, and
K.
Mizoguchi
,
Macromolecules
28
,
6579
(
1995
).
28.
W. R.
Krigbaum
and
D. K.
Carpenter
,
J. Polym. Sci.
14
,
241
(
1954
).
29.
G. M.
Bristow
,
Trans. Faraday Soc.
55
,
1246
(
1959
).
30.
O.
Okeowa
and
J. R.
Dorgan
,
Macromolecules
39
,
8193
(
2006
).
31.
R.
Okamoto
and
A.
Onuki
,
Phys. Rev. E
82
,
051501
(
2010
).
32.
A.
Onuki
and
R.
Okamoto
,
Curr. Opin. Colloid Interface Sci.
16
,
525
(
2011
).
33.
A.
Onuki
,
R.
Okamoto
, and
T.
Araki
,
Bull. Chem. Soc. Jpn.
84
,
569
(
2011
).
34.
R. L.
Scott
,
J. Chem. Phys.
17
,
268
(
1949
).
35.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University
,
Ithaca, New York
,
1953
).
36.
T.
Iwatsubo
and
T.
Shinbo
,
J. Macromol. Sci., Phys.
B40
,
1017
(
2001
).
You do not currently have access to this content.