We propose a general framework for the efficient sampling of conformational equilibria in complex systems and the generation of associated free energy hypersurfaces in terms of a set of collective variables. The method is a strategic synthesis of the adiabatic free energy dynamics approach, previously introduced by us and others, and existing schemes using Gaussian-based adaptive bias potentials to disfavor previously visited regions. In addition, we suggest sampling the thermodynamic force instead of the probability density to reconstruct the free energy hypersurface. All these elements are combined into a robust extended phase-space formalism that can be easily incorporated into existing molecular dynamics packages. The unified scheme is shown to outperform both metadynamics and adiabatic free energy dynamics in generating two-dimensional free energy surfaces for several example cases including the alanine dipeptide in the gas and aqueous phases and the met-enkephalin oligopeptide. In addition, the method can efficiently generate higher dimensional free energy landscapes, which we demonstrate by calculating a four-dimensional surface in the Ramachandran angles of the gas-phase alanine tripeptide.

1.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
(
5
),
472
477
(
1989
).
2.
M.
Sprik
and
G.
Ciccotti
,
J. Chem. Phys.
109
(
18
),
7737
7744
(
1998
).
3.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
(
2
),
187
199
(
1977
).
4.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
99
(
20
),
12562
12566
(
2002
).
5.
L.
Rosso
,
P.
Minary
,
Z.
Zhu
, and
M. E.
Tuckerman
,
J. Chem. Phys.
116
(
11
),
4389
4402
(
2002
).
6.
L.
Maragliano
and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
426
(
1-3
),
168
175
(
2006
).
7.
J. B.
Abrams
and
M. E.
Tuckerman
,
J. Phys. Chem. B
112
(
49
),
15742
15757
(
2008
).
8.
P.
Minary
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
SIAM J. Sci. Comput. (USA)
30
(
4
),
2055
2083
(
2008
).
9.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
(
20
),
9169
9183
(
2001
).
10.
J.
Hénin
and
C.
Chipot
,
J. Chem. Phys.
121
(
7
),
2904
2914
(
2004
).
11.
E.
Darve
,
D.
Rodríguez-Gómez
, and
A.
Pohorille
,
J. Chem. Phys.
128
,
144120
(
2008
).
12.
B. M.
Dickson
,
F.
Legoll
,
T.
Lelievre
,
G.
Stoltz
, and
P.
Fleurat-Lessard
,
J. Phys. Chem. B
114
(
17
),
5823
5830
(
2010
).
13.
S. O.
Samuelson
and
G. J.
Martyna
,
J. Chem. Phys.
109
,
11061
(
1998
).
14.
J.
Hénin
,
G.
Fiorin
,
C.
Chipot
, and
M. L.
Klein
,
J. Chem. Theory Comput.
6
(
1
),
35
47
(
2010
).
15.
L.
Sutto
,
M.
D’Abramo
, and
F. L.
Gervasio
,
J. Chem. Theory Comput.
6
,
3640
3646
(
2010
).
16.
B.
Ensing
,
M.
De Vivo
,
Z.
Liu
,
P.
Moore
, and
M. L.
Klein
,
Acc. Chem. Res.
39
(
2
),
73
81
(
2006
).
17.
C.
Chipot
and
T.
Lelièvre
,
SIAM J. Appl. Math.
71
(
5
),
1673
1695
(
2011
).
18.
J.
Gumbart
,
C.
Chipot
, and
K.
Schulten
,
J. Am. Chem. Soc.
133
(
19
),
7602
7607
(
2011
).
19.
T.
Huber
,
A. E.
Torda
, and
W. F.
van Gunsteren
,
J. Comput.-Aided Mol. Des.
8
(
6
),
695
708
(
1994
).
20.
H.
Grubmüller
,
Phys. Rev. E
52
(
3
),
2893
2906
(
1995
).
21.
J.
Kästner
and
W.
Thiel
,
J. Chem. Phys.
123
(
14
),
144104
(
2005
).
22.
L.
Maragliano
and
E.
Vanden-Eijnden
,
J. Chem. Phys.
128
(
18
),
184110
(
2008
).
23.
V.
Babin
,
C.
Roland
, and
C.
Sagui
,
J. Chem. Phys.
128
(
13
),
134101
(
2008
).
24.
M. E.
Tuckerman
,
D. A.
Yarne
,
S. O.
Samuelson
,
A. L.
Hughes
, and
G. J.
Martyna
,
Comput. Phys. Commun.
128
(
1-2
),
333
376
(
2000
).
25.
A. D.
MacKerell
 Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
 Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
 et al.,
J. Phys. Chem. B
102
(
18
),
3586
3616
(
1998
).
26.
Y.
Liu
and
M. E.
Tuckerman
,
J. Chem. Phys.
112
(
4
),
1685
(
2000
).
27.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
(
5
),
1117
1157
(
1996
).
28.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
(
19
),
8577
(
1995
).
29.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
(
1983
).
30.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
31.
H. J.
Andersen
,
J. Comput. Phys.
52
(
1
),
24
34
(
1983
).
32.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
(
3
),
435
447
(
2008
).
33.
P.
Bjelkmar
,
P.
Larsson
,
M. A.
Cuendet
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Theory Comput.
6
(
2
),
459
466
(
2010
).
34.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
 et al.,
Comput. Phys. Commun.
180
(
10
),
1961
1972
(
2009
).
35.
A.
Laio
,
A.
Rodriguez-Fortea
,
F. L.
Gervasio
,
M.
Ceccarelli
, and
M.
Parrinello
,
J. Phys. Chem. B
109
(
14
),
6714
6721
(
2005
).
36.
M.
Bonomi
and
M.
Parrinello
,
Phys. Rev. Lett.
104
(
19
),
190601
(
2010
).
37.
B.
Zagrovic
and
V.
Pande
,
J. Comput. Chem.
24
(
12
),
1432
1436
(
2003
).
38.
P. J.
Gee
and
W. F.
van Gunsteren
,
Chem. Eur. J.
12
(
1
),
72
75
(
2006
).
39.
I. C.
Lin
and
M. E.
Tuckerman
,
J. Phys. Chem. B
114
,
15935
15940
(
2010
).
40.
N.
Kamiya
,
Y. S.
Watanabe
,
S.
Ono
, and
J.
Higo
,
Chem. Phys. Lett.
401
(
1-3
),
312
317
(
2005
).
41.
P.
Das
,
M.
Moll
,
H.
Stamati
,
L. E.
Kavraki
, and
C.
Clementi
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
9885
9890
(
2006
).
42.
H.
Stamati
,
C.
Clementi
, and
L. E.
Kavraki
,
Proteins: Struct., Funct., Genet.
78
,
223
235
(
2010
).
43.
M.
Ceriotti
,
G. A.
Tribello
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
108
(
32
),
13023
13028
(
2011
).
44.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
(
1-2
),
141
151
(
1999
).
45.
S.
Piana
and
A.
Laio
,
J. Phys. Chem. B
111
(
17
),
4553
4559
(
2007
).
46.
G. A.
Tribello
,
M.
Ceriotti
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
41
),
17509
17514
(
2010
).
47.
C. F.
Abrams
and
E.
Vanden-Eijnden
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
11
),
4961
4966
(
2010
).
48.
M. J.
Berger
and
J.
Oliger
,
J. Comput. Phys.
53
(
3
),
484
512
(
1984
).
49.
F.
Gygi
,
Phys. Rev. B
48
(
16
),
11692
11700
(
1993
).
50.
S.
Piana
and
A.
Laio
,
Phys. Rev. Lett.
101
(
20
),
208101
(
2008
).
51.
G.
Bussi
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
96
(
9
),
90601
(
2006
).
52.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
(
3
),
1990
(
1992
).
53.
L.
Rosso
and
M. E.
Tuckerman
,
Mol. Simul.
28
(
1-2
),
91
112
(
2002
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4733389 for a detailed description of the energies and locations of the free energy minima for the various example systems studied. Where appropriate, comparisons with either metadynamics or REMD are also given.

Supplementary Material

You do not currently have access to this content.