Simple cubic (SC) phase has been long experimentally determined as the high-pressure phase III of elemental calcium (Ca) since 1984. However, recent density functional calculations within semi-local approximation showed that this SC phase is structurally unstable by exhibiting severely imaginary phonons, and is energetically unstable with respect to a theoretical body-centered tetragonal I41/amd structure over the pressure range of phase III. These calculations generated extensive debates on the validity of SC phase. Here we have re-examined the SC structure by performing more precise density functional calculations within hybrid functionals of Heyd-Scuseria-Erhzerhof and PBE0. Our calculations were able to rationalize fundamentally the phase stability of SC structure over all other known phases by evidence of its actual energetic stability above 33 GPa and its intrinsically dynamical stability without showing any imaginary phonons in the entire pressure range studied. We further established that the long-thought theoretical I41/amd structure remains stable in a narrow pressure range before entering SC phase and is actually the structure of experimental Ca-III synthesized recently at low temperature 14 K as supported by the excellent agreement between our simulated x-ray diffraction patterns and the experimental data. Our results shed strong light on the crucial role played by the precise electron exchange energy in a proper description of the potential energy of Ca.

1.
A.
Jayaraman
,
W.
Klement
, Jr.
, and
G. C.
Kennedy
,
Phys. Rev.
132
,
1620
1624
(
1963
).
2.
H.
Olijnyk
and
W. B.
Holzapfel
,
Phys. Lett. A
100
,
191
194
(
1984
).
3.
T.
Yabuuchi
,
Y.
Nakamoto
,
K.
Shimizu
, and
T.
Kikegawa
,
J. Phys. Soc. Jpn.
74
,
2391
2392
(
2005
).
4.
H.
Fujihisa
,
Y.
Nakamoto
,
K.
Shimizu
,
T.
Yabuuchi
, and
Y.
Gotoh
,
Phys. Rev. Lett.
101
,
095503
(
2008
).
5.
Q. F.
Gu
,
G.
Krauss
,
Y.
Grin
, and
W.
Steurer
,
Phys. Rev. B
79
,
134121
(
2009
).
6.
M.
Sakata
,
Y.
Nakamoto
,
K.
Shimizu
,
T.
Matsuoka
, and
Y.
Ohishi
,
Phys. Rev. B
83
,
220512
(
2011
).
7.
Y.
Nakamoto
,
M.
Sakata
,
K.
Shimizu
,
H.
Fujihisa
,
T.
Matsuoka
,
Y.
Ohishi
, and
T.
Kikegawa
,
Phys. Rev. B
81
,
140106
(
2010
).
8.
K. J.
Dunn
and
F. P.
Bundy
,
Phys. Rev. B
24
,
1643
1650
(
1981
).
9.
T.
Yabuuchi
,
T.
Matsuoka
,
Y.
Nakamoto
, and
K.
Shimizu
,
J. Phys. Soc. Jpn.
75
,
083703
(
2006
).
10.
A. R.
Oganov
,
Y.
Ma
,
Y.
Xu
,
I.
Errea
,
A.
Bergara
, and
A. O.
Lyakhov
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
7646
(
2010
).
11.
Y.
Yao
,
J. S.
Tse
,
Z.
Song
,
D. D.
Klug
,
J.
Sun
, and
Y.
Le Page
,
Phys. Rev. B
78
,
054506
(
2008
).
12.
I.
Errea
,
M.
Martinez-Canales
,
A. R.
Oganov
, and
A.
Bergara
,
High Press. Res.
28
,
443
448
(
2008
).
13.
G.
Gao
,
Y.
Xie
,
T.
Cui
,
Y.
Ma
,
L.
Zhang
, and
G.
Zou
,
Solid State Commun.
146
,
181
185
(
2008
).
14.
J. S.
Tse
,
S.
Desgreniers
,
Y.
Ohishi
, and
T.
Matsuoka
,
Sci. Rep.
2
,
372
(
2012
).
15.
Y.
Yao
,
R.
Martonak
,
S.
Patchkovskii
, and
D. D.
Klug
,
Phys. Rev. B
82
,
094107
(
2010
).
16.
T.
Ishikawa
,
H.
Nagara
,
N.
Suzuki
, and
K.
Shimizu
,
High Press. Res.
32
,
11
(
2012
).
17.
W. L.
Mao
,
L.
Wang
,
Y.
Ding
,
W.
Yang
,
W.
Liu
,
D. Y.
Kim
,
W.
Luo
,
R.
Ahuja
,
Y.
Meng
, and
S.
Sinogeikin
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
9965
(
2010
).
18.
A. M.
Teweldeberhan
and
S. A.
Bonev
,
Phys. Rev. B
78
,
140101
(
2008
).
19.
A. M.
Teweldeberhan
,
J. L.
Dubois
, and
S. A.
Bonev
,
Phys. Rev. Lett.
105
,
235503
(
2010
).
20.
I.
Errea
,
B.
Rousseau
, and
A.
Bergara
,
Phys. Rev. Lett.
106
,
165501
(
2011
).
21.
Y.
Yao
,
D. D.
Klug
,
J.
Sun
, and
R.
Martonak
,
Phys. Rev. Lett.
103
,
055503
(
2009
).
22.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
23.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
24.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
25.
E. R.
Batista
,
J.
Heyd
,
R. G.
Hennig
,
B. P.
Uberuaga
,
R. L.
Martin
,
G. E.
Scuseria
,
C. J.
Umrigar
, and
J. W.
Wilkins
,
Phys. Rev. B
74
,
121102
(
2006
).
26.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
27.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
29.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
30.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
31.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
32.
Y.
Xu
,
L.
Zhang
,
T.
Cui
,
Y.
Li
,
Y.
Xie
,
W.
Yu
,
Y.
Ma
, and
G.
Zou
,
Phys. Rev. B
76
,
214103
(
2007
).
33.
B.
Li
,
Y.
Ding
,
W.
Yang
,
L.
Wang
,
B.
Zou
,
J.
Shu
,
S.
Sinogeikine
,
C.
Parke
,
G.
Zou
, and
H.-k.
Mao
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
16459
(
2012
).
34.
After our submission, an excellent experimental work33 reports a direct experimental evidence on actual existence of I41/amd structure at ∼30–40 GPa and low temperature (∼6 K).
You do not currently have access to this content.