The diffusion of a suspended Brownian particle along a sinusoidally corrugated narrow channel is investigated to assess the validity of two competing analytical schemes, both based on effective one-dimensional kinetic equations, one continuous (entropic channel scheme) and the other discrete (random walker scheme). For narrow pores, the characteristic diffusion time scale is represented by the mean first exit time out of a channel compartment. Such a diffusion time has been analytically calculated in both approximate schemes; the two analytical results coincide in leading order and are in excellent agreement with the simulation data.

1.
B.
Hille
,
Ion Channels of Excitable Membranes
(
Sinauer
,
Sunderland
,
2001
), Chap. 13 and following.
2.
J.
Kärger
and
D. M.
Ruthven
,
Diffusion in Zeolites and Other Microporous Solids
(
Wiley
,
New York
,
1992
).
3.
H.
Brenner
and
D. A.
Edwards
,
Macrotransport Processes
(
Butterworth-Heinemann
,
New York
,
1993
).
4.
P.
Hänggi
and
F.
Marchesoni
,
Rev. Mod. Phys.
81
,
387
(
2009
).
5.
For a review see
P. S.
Burada
,
P.
Hänggi
,
F.
Marchesoni
,
G.
Schmid
, and
P.
Talkner
,
ChemPhysChem
10
,
45
(
2009
).
6.
R.
Zwanzig
,
J. Phys. Chem.
96
,
3926
(
1992
).
7.
D.
Reguera
and
J. M.
Rubí
,
Phys. Rev. E
64
,
061106
(
2001
).
8.
P.
Kalinay
and
J. K.
Percus
,
Phys. Rev. E
74
,
041203
(
2006
).
9.
N.
Laachi
,
M.
Kenward
,
E.
Yariv
, and
K. D.
Dorfman
,
EPL
80
,
50009
(
2007
).
10.
D.
Reguera
,
G.
Schmid
,
P. S.
Burada
,
J. M.
Rubí
,
P.
Reimann
, and
P.
Hänggi
,
Phys. Rev. Lett.
96
,
130603
(
2006
).
11.
P. S.
Burada
,
G.
Schmid
,
D.
Reguera
,
J. M.
Rubi
, and
P.
Hänggi
,
Phys. Rev. E
75
,
051111
(
2007
).
12.
R.
Reichelt
,
S.
Günther
,
J.
Wintterlin
,
W.
Moritz
,
L.
Aballe
, and
T. O.
Mentes
,
J. Phys. Chem.
127
,
134706
(
2007
).
13.
D.
Mondal
and
D. S.
Ray
,
Phys. Rev. E
82
,
032103
(
2010
).
14.
F.
Marchesoni
and
S.
Savel'ev
,
Phys. Rev. E
80
,
011120
(
2009
);
F.
Marchesoni
,
J. Chem. Phys.
132
,
166101
(
2010
).
[PubMed]
15.
A. M.
Berezhkovskii
,
L.
Dagdug
,
Yu. A.
Makhnovskii
, and
V. Yu.
Zitserman
,
J. Chem. Phys.
132
,
221104
(
2010
).
16.
Yu. A.
Makhnovskii
,
A. M.
Berezhkovskii
,
L. V.
Bogachev
, and
V. Yu.
Zitserman
,
J. Phys. Chem. B
115
,
3992
(
2011
).
17.
I.
Pineda
,
M. V.
Vazquez
,
A. M.
Berezhkovskii
, and
L.
Dagdug
,
J. Chem. Phys.
135
,
224101
(
2011
).
18.
M.
Borromeo
and
F.
Marchesoni
,
Chem. Phys.
375
,
536
(
2010
).
19.
M.
Borromeo
,
F.
Marchesoni
, and
P. K.
Ghosh
,
J. Chem. Phys.
134
,
051101
(
2011
).
20.
P. K.
Ghosh
,
F.
Marchesoni
,
S. E.
Savel'ev
, and
F.
Nori
,
Phys. Rev. Lett.
104
,
020601
(
2010
).
21.
P.
Hänggi
,
F.
Marchesoni
,
S.
Savel'ev
, and
G.
Schmid
,
Phys. Rev. E
82
,
041121
(
2010
).
22.
M. H.
Jacobs
,
Diffusion Processes
(
Springer
,
New York
,
1967
).
23.
A. M.
Berezhkovskii
,
A. V.
Barzykin
, and
V. Yu.
Zitserman
,
J. Chem. Phys.
131
,
224110
(
2009
).
24.
P.
Kalinay
and
K.
Percus
,
Phys. Rev. E
82
,
031143
(
2010
).
25.
D.
Holcman
and
Z.
Schuss
,
Phys. Rev. E
85
,
010103
(
2012
).
26.
A.
Singer
,
Z.
Schuss
,
D.
Holcman
, and
R. S.
Eisenberg
,
J. Stat. Phys.
122
,
437
(
2006
);
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
,
J. Stat. Phys.
122
,
465
(
2006
);
A.
Singer
,
Z.
Schuss
, and
D.
Holcman
,
J. Stat. Phys.
122
,
491
(
2006
);
Z.
Schuss
,
A.
Singer
, and
D.
Holcman
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
16098
(
2007
).
[PubMed]
27.
D.
Holcman
,
N.
Hoze
, and
Z.
Schuss
,
Phys. Rev. E
84
,
021906
(
2011
);
D.
Holcman
,
N.
Hoze
, and
Z.
Schuss
,
Phys. Rev. E
85
,
039903
(
2012
) (Erratum).
28.
P.
Kloeden
and
E.
Platen
,
Numerical Solutions of Stochastic Differential Equations
(
Springer
,
Berlin
,
1999
).
29.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 2nd ed. (
Springer
,
Berlin
,
1985
), Chaps. 5 and 9.
30.
P.
Kalinay
,
J. Chem. Phys.
126
,
194708
(
2007
).
31.
P. K.
Ghosh
,
P.
Hänggi
,
F.
Marchesoni
,
S.
Martens
,
F.
Nori
,
L.
Schimansky-Geier
, and
G.
Schmid
,
Phys. Rev. E
85
,
011101
(
2012
).
You do not currently have access to this content.