We investigate the Markovian limit of a polaronic quantum master equation for coherent resonance energy transfer proposed recently by Jang et al [J. Chem. Phys.129, 101104 (2008)

]. An expression for the rate of excitation energy transfer (EET) is derived and shown to exhibit both coherent and incoherent contributions. We then apply this theory to calculated EET rates for model dimer systems, and demonstrate that the small-polaron approach predicts a variety of dynamical behaviors. Notably, the results indicate that the EET dynamical behaviors can be understood by the interplay between noise-assisted EET and dynamical localization, while both are well captured by the polaron theory. Finally, we investigate bath correlation effects on the rate of EET and show that bath correlations (or anti-correlations) can either enhance or suppress EET rate depending on the strength of individual system-bath couplings. In summary, we introduce the small-polaron approach as an intuitive physical framework to consolidate our understanding of EET dynamics in the condensed phase.

1.
G. D.
Scholes
and
G.
Rumbles
,
Nature Mater.
5
,
683
(
2006
).
2.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley-Blackwell
,
2002
).
3.
R. J.
Cogdell
,
A. T.
Gardiner
,
H.
Hashimoto
, and
T. H. P.
Brotosudarmo
,
Photochem. Photobiol. Sci.
7
,
1150
(
2008
).
4.
Y.-C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
5.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
6.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
7.
E.
Collini
and
G. D.
Scholes
,
Science
323
,
369
(
2009
).
8.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature
463
,
644
(
2010
).
9.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12766
(
2010
).
10.
D.
Beljonne
,
C.
Curutchet
,
G. D.
Scholes
, and
R. J.
Silbey
,
J. Phys. Chem. B
113
,
6583
(
2009
).
11.
R.-X.
Xu
and
Y.
Yan
,
Phys. Rev. E
75
,
031107
(
2007
).
12.
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
13.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
14.
C.
Kreisbeck
and
T.
Kramer
,
J. Phys. Chem. Lett.
3
,
2828
(
2012
).
15.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
16.
M.
Sarovar
,
A.
Ishizaki
,
G. R.
Fleming
, and
K. B.
Whaley
,
Nat. Phys.
6
,
462
(
2010
).
17.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodríguez
, and
B.
Hein
,
J. Chem. Theory Comput.
7
,
2166
(
2011
).
18.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
19.
S.
Jang
,
J. Chem. Phys.
131
,
164101
(
2009
).
20.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
22.
D. P. S.
McCutcheon
and
A.
Nazir
,
Phys. Rev. B
83
,
165101
(
2011
).
23.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
24.
R. J.
Silbey
and
T.
Harris
,
J. Chem. Phys.
80
,
2615
(
1984
).
25.
Y.-C.
Cheng
and
R. J.
Silbey
,
J. Chem. Phys.
128
,
114713
(
2008
).
26.
D. P. S.
McCutcheon
and
A.
Nazir
,
J. Chem. Phys.
135
,
114501
(
2011
).
27.
C. K.
Lee
,
J.
Moix
, and
J.
Cao
,
J. Chem. Phys.
136
,
204120
(
2012
).
28.
E. N.
Zimanyi
and
R. J.
Silbey
,
Philos. Trans. R. Soc. London, Ser. A
370
,
3620
(
2012
).
29.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
31.
M.
Grover
and
R. J.
Silbey
,
J. Chem. Phys.
54
,
4843
(
1971
).
32.
V. M.
Kenkre
and
R. S.
Knox
,
Phys. Rev. B
9
,
5279
(
1974
).
33.
I. I.
Abram
and
R.
Silbey
,
J. Chem. Phys.
63
,
2317
(
1975
).
34.
35.
A.
Suarez
,
R. J.
Silbey
, and
I.
Oppenheim
,
J. Chem. Phys.
97
,
5101
(
1992
).
36.
Y.-C.
Cheng
and
R. J.
Silbey
,
J. Phys. Chem. B
109
,
21399
(
2005
).
37.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
).
38.
T.-C.
Yen
and
Y.-C.
Cheng
,
Procedia Chem.
3
,
211
(
2011
).
40.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
41.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
42.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
,
105012
(
2010
).
43.
M.
Sarovar
,
Y.-C.
Cheng
, and
K. B.
Whaley
,
Phys. Rev. E
83
,
011906
(
2011
).
44.
Y.
Toyozawa
,
Prog. Theor. Phys.
26
,
29
(
1961
).
45.
X.
Chen
and
R. J.
Silbey
,
J. Chem. Phys.
132
,
204503
(
2010
).
46.
F.
Fassioli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Phys. Chem. Lett.
1
,
2139
(
2010
).
47.
J.
Struempfer
and
K.
Schulten
,
J. Chem. Phys.
134
,
095102
(
2011
).
48.
C.
Olbrich
,
J.
Struempfer
,
K.
Schulten
, and
U.
Kleinekathoefer
,
J. Phys. Chem. B
115
,
758
(
2011
).
49.
Y.
Jing
,
R.
Zheng
,
H.-X.
Li
, and
Q.
Shi
,
J. Phys. Chem. B
116
,
1164
(
2012
).
50.
H.
Jeffreys
and
B. S.
Jeffreys
,
Methods of Mathematical Physics
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1988
), pp.
465
466
.
You do not currently have access to this content.