In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995–1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.

1.
H.
Ohtaki
and
T.
Radnai
,
Chem. Rev.
93
,
1157
(
1993
).
2.
L.
Helm
and
A. E.
Merbach
,
Chem. Rev.
105
,
1923
(
2005
).
3.
7.
R. M.
Fuoss
,
Proc. Natl. Acad. Sci. U.S.A.
45
,
807
(
1959
).
8.
R. H.
Boyd
,
J. Chem. Phys.
35
,
1281
(
1961
).
9.
R.
Zwanzig
,
J. Chem. Phys.
38
,
1603
(
1963
).
10.
R.
Zwanzig
,
J. Chem. Phys.
52
,
3625
(
1970
).
11.
J. B.
Hubbard
and
L.
Onsager
,
J. Chem. Phys.
67
,
4580
(
1977
).
12.
J. B.
Hubbard
,
L.
Onsager
,
W. M.
van Beek
, and
M.
Mandle
,
Proc. Natl. Acad. Sci. U.S.A
74
,
401
(
1977
).
13.
J. H.
Chen
and
S. A.
Adelman
,
J. Chem. Phys.
72
,
2819
(
1980
).
14.
P. G.
Wolynes
,
J. Chem. Phys.
68
,
473
(
1978
).
15.
P.
Colonomos
and
P. G.
Wolynes
,
J. Chem. Phys.
71
,
2644
(
1979
).
16.
J. P.
Hubbard
,
P.
Colonomos
, and
P. G.
Wolynes
,
J. Chem. Phys.
71
,
2652
(
1979
).
17.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
110
,
10024
(
1999
).
18.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
,
J. Phys. Chem. B
102
,
4193
(
1998
).
19.
R. M.
Lynden-Bell
and
J. C.
Rasaiah
,
J. Chem. Phys.
107
,
1981
(
1997
).
20.
F. S.
Zhang
and
R. M.
Lynden-Bell
,
Phys. Rev. E
71
,
021502
(
2005
).
21.
F. S.
Zhang
and
R. M.
Lynden-Bell
,
Phys. Rev. Lett.
90
,
185505
(
2003
).
22.
I. S.
Joung
and
T. E.
Cheatman
,
J. Phys. Chem. B
113
,
13279
(
2009
).
23.
P. K.
Ghorai
,
S.
Yashonath
, and
R. M.
Lynden-Bell
,
J. Phys. Chem. B
109
,
8120
(
2005
).
24.
P. K.
Ghorai
and
S.
Yashonath
,
J. Phys. Chem. B
110
,
12179
(
2006
).
25.
B. J.
Borah
and
S.
Yashonath
,
J. Chem. Phys.
133
,
114504
(
2010
).
26.
R.
Brooks
,
A.
Davies
,
G.
Ketwaroo
, and
P. A.
Madden
,
J. Phys. Chem. B
109
,
6485
(
2005
).
27.
M.
Salanne
,
C.
Simon
,
P.
Turq
, and
P. A.
Madden
,
J. Phys. Chem. B
111
,
4678
(
2007
).
28.
F.
Martelli
,
S.
Abadie
,
J.-P.
Simonin
,
R.
Vuilleumier
, and
R.
Spezia
, “
Lanthanoids(III) and actinoids(III) in water: Diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations
,”
Pure Appl. Chem.
(in press).
29.
N.
Kaltsoyannis
and
P.
Scott
,
The f Elements
,
Oxford Chemistry Primers Vol. 76
(
Oxford University Press
,
Oxford
,
2007
).
30.
M.
Duvail
,
M.
Souaille
,
R.
Spezia
,
T.
Cartailler
, and
P.
Vitorge
,
J. Chem. Phys.
127
,
034503
(
2007
).
31.
M.
Duvail
,
P.
Vitorge
, and
R.
Spezia
,
J. Chem. Phys.
130
,
104501
(
2009
).
32.
M.
Duvail
,
F.
Martelli
,
P.
Vitorge
, and
R.
Spezia
,
J. Chem. Phys.
135
,
044503
(
2011
).
33.
I.
Persson
,
P.
D'Angelo
,
S.
De Panfilis
,
M.
Sandström
, and
L.
Eriksson
,
Chem. Eur. J.
14
,
3056
(
2008
).
34.
F. M.
Floris
and
A.
Tani
,
J. Chem. Phys.
115
,
4750
(
2001
).
35.
A.
Villa
,
B.
Hess
, and
H.
Saint-Martin
,
J. Phys. Chem. B
113
,
7270
(
2009
).
36.
P.
D'Angelo
and
R.
Spezia
,
Chem. Eur. J.
18
,
11162
(
2012
).
37.
B.
Fourest
,
J.
Duplessis
, and
F.
David
,
Radiochim. Acta
36
,
191
(
1984
).
38.
F. H.
David
and
V.
Vokhmin
,
New J. Chem.
27
,
1627
(
2003
).
39.
P.
D'Angelo
,
A.
Zitolo
,
V.
Migliorati
,
G.
Chillemi
,
M.
Duvail
,
P.
Vitorge
,
S.
Abadie
, and
R.
Spezia
,
Inorg. Chem.
50
,
4572
(
2011
).
41.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1982
).
42.
P.
van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
(
1998
).
43.
A.
Wallqvist
and
R. D.
Mountain
,
Rev. Comput. Chem.
13
,
183
(
1999
).
44.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6665
(
2005
).
45.
F.
Hutchinson
,
M.
Wilson
, and
P. A.
Madden
,
Mol. Phys.
99
,
811
(
2001
).
46.
M.
Wilson
,
P. A.
Madden
, and
P.
Costa-Cabral
,
J. Phys. Chem.
100
,
1227
(
1996
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4758452 for parameters employed in simulations and Walden products analytical expressions.
48.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
49.
M.
Souaille
,
H.
Loirat
,
D.
Borgis
, and
M.-P.
Gaigeot
,
Comput. Phys. Commun.
180
,
276
(
2009
).
50.
M.
Sprik
,
J. Chem. Phys.
95
,
2283
(
1991
).
51.
I. C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
52.
S.
Kerisit
and
C.
Liu
,
Geochim. Cosmochim. Acta
74
,
4937
(
2010
).
53.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
J. Phys. Chem.
87
,
5071
(
1983
).
54.
T.
Kowall
,
F.
Foglia
,
L.
Helm
, and
A. E.
Merbach
,
J. Chem. Phys.
99
,
13078
(
1995
).
55.
V.
Migliorati
,
G.
Mancini
,
G.
Chillemi
,
A.
Zitolo
, and
P.
D'Angelo
,
J. Phys. Chem. A
115
,
4798
(
2011
).
56.
M. A.
Kastenholtz
and
P. H.
Hünenberger
,
J. Chem. Phys.
124
,
124106
(
2006
).
57.
M. A.
Kastenholtz
and
P. H.
Hünenberger
,
J. Chem. Phys.
124
,
224501
(
2006
).
58.
P.
Hunenberger
and
M.
Reif
,
Single-Ion Solvation
,
RCS Theoretical and Computational Series Vol. 3
(
RCS
,
2011
).
59.
N.
Bjerrum
and
E.
Larsson
,
Z. Phys. Chem.
127
,
358
(
1927
).
60.
F. H.
Spedding
,
R. A.
Nelson
, and
J. A.
Rard
,
J. Chem. Eng. Data
19
,
379
(
1974
).
61.
K. B.
Möller
,
R.
Rey
,
M.
Masia
, and
J. T.
Hynes
,
J. Chem. Phys.
122
,
114508
(
2005
).
62.
A. J.
Masters
and
P. A.
Madden
,
J. Chem. Phys.
74
,
2450
(
1981
).
63.
R. P.
Matthews
,
G. A.
Venter
, and
K. J.
Naidoo
,
J. Phys. Chem. B
115
,
1045
(
2011
).
64.
F. H.
Spedding
,
M. J.
Pikal
, and
B. O.
Ayers
,
J. Phys. Chem.
70
,
2440
(
1996
).

Supplementary Material

You do not currently have access to this content.