New accurate ground-state potential energy curves (PEC) for the 4HeH+, 4HeD+, 3HeH+, and 3HeD+ isotopologues are calculated with 600 explicitly correlated Gaussian (ECG) functions with shifted centers in the range between R = 0.35 a0 and 145 a0. The calculations include the adiabatic corrections (AC). The absolute accuracy of all Born-Oppenheimer (BO) PEC points is better than 0.0018 cm−1 and it is better than 0.0005 cm−1 for the ACs. With respect to the very recent BO PEC calculations performed by Pachucki with 20 000 generalized Heitler-London explicitly correlated functions [K. Pachucki, Phys. Rev. A85, 042511 (2012)] https://doi.org/10.1103/PhysRevA.85.042511, the present energy calculated at R = 1.46 a0 (a point near the BO equilibrium distance) lies above by only 0.0012 cm−1. Using Pachucki's BO energy at the equilibrium distance of R = 1.463 283 a0, and the adiabatic corrections calculated in this work for the 4HeH+, 4HeD+, 3HeH+, and 3HeD+ isotopologues, the following values are obtained for their PEC depths: 16 448.99893 cm−1, 16 456.86246 cm−1, 16 451.50635 cm−1, and 16 459.36988 cm−1, respectively. We also calculate the rovibrational (rovib) frequencies for the four isotopologues using the BO PEC of Pachucki augmented with the present ACs. The improvements over the BO+AC PEC of Bishop and Cheung (BC) [J. Mol. Spectrosc.75, 462 (1979)] https://doi.org/10.1016/0022-2852(79)90090-0 are 1.522 cm−1 at R = 4.5 a0 and 0.322 cm−1 at R = ∞. To partially account for the nonadiabatic effects in the rovib calculations an effective reduced-mass approach is used. With that, the present 4HeH+ rovibrational transitions are considerably improved over the BC transitions as compared with the experimental values. Now the rovibrational transitions near the dissociation limit are as well reproduced by the present calculations as the lower transitions. For example, for the 4HeD+ transitions corresponding to the ν = 13-9 hot bands the results are off from the experimental values by less than 0.023 cm−1. This confirms high accuracy of the present PECs at larger internuclear separations.

1.
T. R.
Hogness
and
E. G.
Lunn
,
Phys. Rev.
26
,
44
(
1925
).
2.
J. A.
Coxon
and
P. G.
Hajigeorgiou
,
J. Mol. Spectrosc.
193
,
306
(
1999
).
3.
D. E.
Tolliver
,
G. A.
Kyrala
, and
W. H.
Wing
,
Phys. Rev. Lett.
43
,
1719
(
1979
).
4.
A.
Carrington
,
J.
Buttenshaw
,
R. A.
Kennedy
, and
T. P.
Softley
,
Mol. Phys.
44
,
1233
(
1981
).
5.
A.
Carrington
,
R. A.
Kennedy
,
T. P.
Softley
, and
P. G.
Fournier
,
Chem. Phys.
81
,
251
(
1983
).
6.
J.
Purder
,
S.
Civis
,
C. E.
Blom
, and
M. C.
van Hemert
,
J. Mol. Spectrosc.
153
,
701
(
1992
).
7.
P.
Bernath
and
T.
Amano
,
Phys. Rev. Lett.
48
,
20
(
1982
).
8.
D. J.
Liu
,
W. C.
Ho
, and
T.
Oka
,
J. Chem. Phys.
87
,
2442
(
1987
).
9.
M. W.
Crofton
,
R. S.
Altman
,
N. N.
Haese
, and
T.
Oka
,
J. Chem. Phys.
91
,
5882
(
1989
).
10.
F.
Matsushima
,
T.
Oka
, and
K.
Takagi
,
Phys. Rev. Lett.
78
,
1664
(
1997
).
11.
Z.
Liu
and
P. B.
Davies
,
Phys. Rev. Lett.
79
,
2779
(
1997
).
12.
Z.
Liu
and
P. B.
Davies
,
J. Chem. Phys.
107
,
337
(
1997
).
13.
L.
Wolniewicz
,
J. Chem. Phys.
43
,
1087
(
1965
).
14.
W.
Kołos
,
Int. J. Quantum Chem.
10
,
217
(
1976
).
15.
W.
Kołos
and
J. M.
Peek
,
Chem. Phys.
12
,
381
(
1976
).
16.
D. M.
Bishop
and
L. M.
Cheung
,
J. Mol. Spectrosc.
75
,
462
(
1979
).
17.
E. A.
Engel
,
N.
Doss
,
G. J.
Harris
, and
J.
Tennyson
,
Mon. Not. R. Astron. Soc.
357
,
471
(
2005
).
18.
W.
Cencek
,
J.
Komasa
, and
J.
Rychlewski
,
Chem. Phys. Lett.
246
,
417
(
1995
).
19.
K.
Pachucki
,
Phys. Rev. A
85
,
042511
(
2012
).
20.
M.
Pavanello
,
S.
Bubin
,
M.
Molski
, and
L.
Adamowicz
,
J. Chem. Phys.
123
,
104306
(
2005
).
21.
S.
Bubin
,
M.
Stanke
,
D.
Kȩdziera
, and
L.
Adamowicz
,
Phys. Rev. A
76
,
022512
(
2007
).
22.
M.
Stanke
,
D.
Kȩdziera
,
M.
Molski
,
S.
Bubin
,
M.
Barysz
, and
L.
Adamowicz
,
Phys. Rev. Lett.
96
,
233002
(
2006
).
23.
M.
Stanke
,
D.
Kȩdziera
,
S.
Bubin
, and
L.
Adamowicz
,
Phys. Rev. A
77
,
022506
(
2008
).
24.
W. C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
133
,
124106
(
2010
).
25.
W. C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
134
,
064117
(
2011
).
26.
W. C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
136
,
104309
(
2012
).
27.
M.
Pavanello
,
W. C.
Tung
, and
L.
Adamowicz
,
J. Chem. Phys.
131
,
184106
(
2009
).
28.
S.
Bubin
,
M.
Cafiero
, and
L.
Adamowicz
,
Adv. Chem. Phys.
131
,
377
(
2005
).
29.
W.
Cencek
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
266
,
383
(
1997
).
30.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
31.
Codata 2006 recommended values of the fundamental physical constants.
32.
See supplementary material at http://dx.doi.org/10.1063/1.4759077 for the BO PEC energies and adiabatic corrections, as well as all the values of all the rotational-vibrational energy levels of HeH+.
33.
R.
Jaquet
and
W.
Kutzelnigg
,
Chem. Phys.
346
,
69
(
2008
).
34.
P. R.
Bunker
and
R. E.
Moss
,
Mol. Phys.
33
,
417
(
1977
).
35.
P. R.
Bunker
,
C. J.
McLarnon
, and
R. E.
Moss
,
Mol. Phys.
33
,
425
(
1977
).
36.
R. J. L.
Roy
,
A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels
(
University of Waterloo
,
Waterloo, Ontario, Canada
,
2007
).
37.
M.
Stanke
,
D.
Kȩdziera
,
S.
Bubin
, and
L.
Adamowicz
,
J. Chem. Phys.
126
,
194312
(
2007
).
38.
G. W. F.
Drake
,
Handbook of Atomic, Molecular, and Optical Physics
, edited by
G. W. F.
Drake
(
Springer
,
2006
).
39.
J. R.
Hoyland
,
J. Chem. Phys.
47
,
49
(
1967
).
40.
C. E.
Blom
,
K.
Möller
, and
R. R.
Filgueira
,
Chem. Phys. Lett.
140
,
489
(
1987
).
41.
J.
Komasa
,
K.
Piszczatowski
,
G.
Łach
,
M.
Przybytek
,
B.
Jeziorski
, and
K.
Pachucki
,
J. Chem. Theory Comput.
7
,
3105
(
2011
).

Supplementary Material

You do not currently have access to this content.