The effect of seeds in templating the morphology of peptide aggregates is examined using molecular dynamics simulations and a coarse-grained peptide representation. Varying the nature of the aggregate seed between β-sheet, amorphous, and β-barrel seeds leads to different aggregation pathways and to morphologically different aggregates. Similar effects are seen by varying the β-sheet propensity of the free peptides. For a fibrillar seed and free peptides of high β-sheet propensity, fibrillar growth occurred by means of direct attachment (without structural rearrangement) of free individual peptides and small ordered oligomers onto the seed. For a fibrillar seed and free peptides of low β-sheet propensity, fibrillar growth occurred through a dock-lock mechanism, in which the free peptides first docked onto the seed, and then locked on, extending and aligning to join the fibril. Amorphous seeds absorbed free peptides into themselves indiscriminately, with any fibrillar rearrangement subsequent to this absorption by means of a condensation-ordering transition. Although the mechanisms observed by varying peptide β-sheet propensity are diverse, the initial pathways can always be broken down into the following steps: (i) the free peptides diffuse in the bulk and attach individually to the seed; (ii) the free peptides diffuse and aggregate among themselves; (iii) the free peptide oligomers collide with the seed; and (iv) the free oligomers merge with the seed and rearrange in a manner dependent on the backbone flexibility of both the free and seed peptides. Our simulations indicate that it is possible to sequester peptides from amorphous aggregates into fibrils, and also that aggregate morphology (and thus cytoxicity) can be controlled by introducing seeds of aggregate-compatible peptides with differing β-sheet propensities into the system.

1.
J.
Greenwald
and
R.
Riek
,
Structure (London)
18
,
1244
(
2010
).
2.
S. K.
Maji
,
M. H.
Perrin
,
M. R.
Sawaya
,
S.
Jessberger
,
K.
Vadodaria
,
R. A.
Rissman
,
P. S.
Singru
,
K. P. R.
Nilsson
,
R.
Simon
,
D.
Schubert
,
D.
Eisenberg
,
J.
Rivier
,
P.
Sawchenko
,
W.
Vale
, and
R.
Riek
,
Science
325
,
328
(
2009
).
3.
D.
Fowler
,
A.
Koulov
,
W.
Balch
, and
J.
Kelly
,
Trends Biochem. Sci.
32
,
217
(
2007
).
4.
M.
Chapman
,
L.
Robinson
,
J.
Pinkner
,
R.
Roth
,
J.
Heuser
,
M.
Hammar
,
S.
Normark
, and
S.
Hultgren
,
Science
295
,
851
(
2002
).
5.
S.
Butterfield
,
M.
Hejjaoui
,
B.
Fauvet
,
L.
Awad
, and
H. A.
Lashuel
,
J. Mol. Biol.
421
,
204
(
2012
).
6.
F.
Chiti
and
C.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
7.
J.
Gray
,
Curr. Opin. Struct. Biol.
14
,
110
(
2004
).
8.
S.
Zhang
,
Nat. Biotechnol.
21
,
1171
(
2003
).
9.
S.
Zhang
,
D.
Marini
,
W.
Hwang
, and
S.
Santoso
,
Curr. Opin. Chem. Biol.
6
,
865
(
2002
).
10.
N.
Seeman
and
A.
Belcher
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
6451
(
2002
).
11.
D.
Matthes
,
V.
Gapsys
,
V.
Daebel
, and
B.
de Groot
,
PloS ONE
6
,
e19129
(
2011
).
12.
J.
Straub
and
D.
Thirumalai
,
Curr. Opin. Struct. Biol.
20
,
187
(
2010
).
13.
Y.
Miller
,
B.
Ma
, and
R.
Nussinov
,
Chem. Rev.
110
,
4820
(
2010
).
14.
E.
Zerovnik
,
R.
Staniforth
, and
D.
Turk
,
Biochimie
92
,
1597
(
2010
).
15.
A.
Rojas
,
A.
Liwo
,
D.
Browne
, and
H.
Scheraga
,
J. Mol. Biol.
404
,
537
(
2010
).
17.
A.
Abedini
and
D.
Raleigh
,
Protein Eng. Des. Sel.
22
,
453
(
2009
).
18.
M.
Lin
,
L.
Chen
,
H.
Tsai
,
S.
Wang
,
Y.
Chang
,
A.
Higuchi
, and
W.
Chen
,
Langmuir
24
,
5802
(
2008
).
19.
R.
Pellarin
,
E.
Guarnera
, and
A.
Caflisch
,
J. Mol. Biol.
374
,
917
(
2007
).
20.
A.
Paravastu
,
A.
Petkova
, and
R.
Tycko
,
Biophys. J.
90
,
4618
(
2006
).
21.
R. A.
Kammerer
,
D.
Kostrewa
,
J.
Zurdo
,
A.
Detken
,
C.
Garcia-Echeverria
,
J. D.
Green
,
S. A.
Mller
,
B. H.
Meier
,
F. K.
Winkler
,
C. M.
Dobson
, and
M. O.
Steinmetz
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
4435
(
2004
).
22.
J.
Kardos
,
K.
Yamamoto
,
K.
Hasegawa
,
H.
Naiki
, and
Y.
Goto
,
J. Biol. Chem.
279
,
55308
(
2004
).
23.
G.
Reddy
,
J.
Straub
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
11948
(
2009
).
24.
J.
Zheng
,
H.
Jang
, and
R.
Nussinov
,
Biochemistry
47
,
2497
(
2008
).
25.
B.
O'Nuallain
,
A.
Williams
,
P.
Westermark
, and
R.
Wetzel
,
J. Biol. Chem.
279
,
17490
(
2004
).
26.
M.
Krebs
,
L.
Morozova-Roche
,
K.
Daniel
,
C.
Robinson
, and
C.
Dobson
,
Protein Sci.
13
,
1933
(
2004
).
27.
D.
Thirumalai
,
D.
Klimov
, and
R.
Dima
,
Curr. Opin. Struct. Biol.
13
,
146
(
2003
).
28.
W.
Xu
,
J.
Ping
,
W.
Li
, and
Y.
Mu
,
J. Chem. Phys.
130
,
164709
(
2009
).
29.
P.
Nguyen
,
M.
Li
,
G.
Stock
,
J.
Straub
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
111
(
2007
).
30.
M.
Gobbi
,
L.
Colombo
,
M.
Morbin
,
G.
Mazzoleni
,
E.
Accardo
,
M.
Vanoni
,
E.
Del Favero
,
L.
Cantù
,
D. A.
Kirschner
,
C.
Manzoni
,
M.
Beeg
,
P.
Ceci
,
P.
Ubezio
,
G.
Forloni
,
F.
Tagliavini
, and
M.
Salmona
,
J. Biol. Chem.
281
,
843
(
2006
).
31.
T.
Scheibel
,
J.
Bloom
, and
S.
Lindquist
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
2287
(
2004
).
32.
S.
Collins
,
A.
Douglass
,
R.
Vale
, and
J.
Weissman
,
PLoS Biol.
2
,
e321
(
2004
).
33.
F.
Massi
and
J.
Straub
,
Proteins: Struct., Funct., Bioinf.
42
,
217
(
2001
).
34.
W.
Esler
,
E.
Stimson
,
J.
Jennings
,
H.
Vinters
,
J.
Ghilardi
,
J.
Lee
,
P.
Mantyh
, and
J.
Maggio
,
Biochemistry
39
,
6288
(
2000
).
35.
R.
Kodali
and
R.
Wetzel
,
Curr. Opin. Struct. Biol.
17
,
48
(
2007
).
36.
C.
Wu
,
M.
Bowers
, and
J.-E.
Shea
,
PLoS Comput. Biol.
6
,
e1000693
(
2010
).
37.
R.
Pellarin
,
P.
Schuetz
,
E.
Guarnera
, and
A.
Caflisch
,
J. Am. Chem. Soc.
132
,
14960
(
2010
).
38.
J.
Meinhardt
,
C.
Sachse
,
P.
Hortschansky
,
N.
Grigorieff
, and
M.
Fändrich
,
J. Mol. Biol.
386
,
869
(
2009
).
39.
M.
Fändrich
,
J.
Meinhardt
, and
N.
Grigorieff
,
Prion
3
,
89
(
2009
).
40.
A.
Petkova
,
R.
Leapman
,
Z.
Guo
,
W.
Yau
,
M.
Mattson
, and
R.
Tycko
,
Science
307
,
262
(
2005
).
41.
C.
Goldsbury
,
P.
Frey
,
V.
Olivieri
,
U.
Aebi
, and
S. A.
Mller
,
J. Mol. Biol.
352
,
282
(
2005
).
42.
A.
Paravastu
,
R.
Leapman
,
W.
Yau
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18349
(
2008
).
43.
M.
Stefani
, “
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits
,”
Prog. Neurobiol.
(to be published).
44.
G.
Anderluh
,
I.
Gutirrez-Aguirre
,
S.
Rabzelj
,
S.
Čeru
,
N.
Kopitar-Jerala
,
P.
Maček
,
V.
Turk
, and
E.
Žerovnik
,
FEBS J.
272
,
3042
(
2005
).
45.
I.
Sirangelo
,
C.
Malmo
,
C.
Iannuzzi
,
A.
Mezzogiorno
,
M.
Bianco
,
M.
Papa
, and
G.
Irace
,
J. Biol. Chem.
279
,
13183
(
2004
).
46.
J.
Cleary
,
D.
Walsh
,
J.
Hofmeister
,
G.
Shankar
,
M.
Kuskowski
,
D.
Selkoe
, and
K.
Ashe
,
Nat. Neurosci.
8
,
79
(
2004
).
47.
D.
Walsh
,
I.
Klyubin
,
J.
Fadeeva
,
W.
Cullen
,
R.
Anwyl
,
M.
Wolfe
,
M.
Rowan
, and
D.
Selkoe
,
Nature (London)
416
,
535
(
2002
).
48.
W.
Klein
,
G.
Krafft
, and
C.
Finch
,
Trends Neurosci.
24
,
219
(
2001
).
49.
V.
Vetri
,
C.
Canale
,
A.
Relini
,
F.
Librizzi
,
V.
Militello
,
A.
Gliozzi
, and
M.
Leone
,
Biophys. Chem.
125
,
184
(
2007
).
50.
K.
Pauwels
,
T. L.
Williams
,
K. L.
Morris
,
W.
Jonckheere
,
A.
Vandersteen
,
G.
Kelly
,
J.
Schymkowitz
,
F.
Rousseau
,
A.
Pastore
,
L. C.
Serpell
, and
K.
Broersen
,
J. Biol. Chem.
287
,
5650
(
2012
).
51.
C.
Wasmer
,
A.
Zimmer
,
R.
Sabaté
,
A.
Soragni
,
S.
Saupe
,
C.
Ritter
, and
B.
Meier
,
J. Mol. Biol.
402
,
311
(
2010
).
52.
Y.
Furukawa
,
K.
Kaneko
,
G.
Matsumoto
,
M.
Kurosawa
, and
N.
Nukina
,
J. Neurosci.
29
,
5153
(
2009
).
53.
S.
Schilling
,
T.
Lauber
,
M.
Schaupp
,
S.
Manhart
,
E.
Scheel
,
G.
Böhm
, and
H.
Demuth
,
Biochemistry
45
,
12393
(
2006
).
54.
M. R.
Nilsson
,
M.
Driscoll
, and
D. P.
Raleigh
,
Protein Sci.
11
,
342
(
2002
).
55.
J.
Harper
and
P.
Lansbury
 Jr.
,
Annu. Rev. Biochem.
66
,
385
(
1997
).
56.
I.
Kuperstein
,
K.
Broersen
,
I.
Benilova
,
J.
Rozenski
,
W.
Jonckheere
,
M.
Debulpaep
,
A.
Vandersteen
,
I.
Segers-Nolten
,
K.
Van Der Werf
,
V.
Subramaniam
,
D.
Braeken
,
G.
Callewaert
,
C.
Bartic
,
R.
D'Hooge
,
I. C.
Martins
,
F.
Rousseau
,
J.
Schymkowitz
, and
B.
De Strooper
,
EMBO J.
29
,
3408
(
2010
).
57.
Y.
Yoshiike
,
D.
Chui
,
T.
Akagi
,
N.
Tanaka
, and
A.
Takashima
,
J. Biol. Chem.
278
,
23648
(
2003
).
58.
C.
MacPhee
and
C.
Dobson
,
J. Am. Chem. Soc.
122
,
12707
(
2000
).
59.
A.
DePace
and
J.
Weissman
,
Nat. Struct. Mol. Biol.
9
,
389
(
2002
).
60.
B.
Urbanc
,
M.
Betnel
,
L.
Cruz
,
G.
Bitan
, and
D.
Teplow
,
J. Am. Chem. Soc.
132
,
4266
(
2010
).
61.
J.
Zhang
and
M.
Muthukumar
,
J. Chem. Phys.
130
,
035102
(
2009
).
62.
M.
Li
,
D.
Klimov
,
J.
Straub
, and
D.
Thirumalai
,
J. Chem. Phys.
129
,
175101
(
2008
).
63.
R. D.
Hills
 Jr.
and
C. L.
Brooks
 III
,
J. Mol. Biol.
368
,
894
(
2007
).
64.
A.
Morriss-Andrews
and
J.
Shea
,
J. Chem. Phys.
136
,
065103
(
2012
).
65.
A.
Magno
,
R.
Pellarin
, and
A.
Caflisch
, in
Computational Modeling of Biological Systems
, edited by
N. V.
Dokholyan
(
Springer
,
New York
,
2012
), p.
191
.
66.
A.
Morriss-Andrews
,
G.
Bellesia
, and
J.-E.
Shea
,
J. Chem. Phys.
135
,
085102
(
2011
).
67.
R.
Vácha
and
D.
Frenkel
,
Biophys. J.
101
,
1432
(
2011
).
68.
G.
Bellesia
and
J.-E.
Shea
,
J. Chem. Phys.
131
,
111102
(
2009
).
69.
H.
Nguyen
and
C.
Hall
,
Proc. Natl. Acad. Sci.
101
,
16180
(
2004
).
70.
C.
Guo
,
M.
Cheung
,
H.
Levine
, and
D.
Kessler
,
J. Chem. Phys.
116
,
4353
(
2002
).
71.
G.
Bellesia
and
J.-E.
Shea
,
J. Chem. Phys.
130
,
145103
(
2009
).
72.
L.
Tjernberg
,
W.
Hosia
,
N.
Bark
,
J.
Thyberg
, and
J.
Johansson
,
J. Biol. Chem.
277
,
43243
(
2002
).
73.
J.
Balbach
,
Y.
Ishii
,
O.
Antzutkin
,
R.
Leapman
,
N.
Rizzo
,
F.
Dyda
,
J.
Reed
, and
R.
Tycko
,
Biochemistry
39
,
13748
(
2000
).
74.
T.
Kowalewski
and
D. M.
Holtzman
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
3688
(
1999
).
75.
C. E.
Giacomelli
and
W.
Norde
,
Biomacromolecules
4
,
1719
(
2003
).
76.
D.
Losic
,
L. L.
Martin
,
M.-I.
Aguilar
, and
D. H.
Small
,
J. Pept. Sci.
84
,
519
(
2006
).
77.
A.
Keller
,
M.
Fritzsche
,
Y.-P.
Yu
,
Q.
Liu
,
Y.-M.
Li
,
M.
Dong
, and
F.
Besenbacher
,
ACS Nano
5
,
2770
(
2011
).
78.
M.
Zhu
,
P.
Souillac
,
C.
Ionescu-Zanetti
,
S.
Carter
, and
A.
Fink
,
J. Biol. Chem.
277
,
50914
(
2002
).
79.
C.
Ha
and
C. B.
Park
,
Langmuir
22
,
6977
(
2006
).
80.
C.
Ha
and
C. B.
Park
,
Biotechnol. Bioeng.
90
,
848
(
2005
).
81.
See supplementary material at http://dx.doi.org/10.1063/1.4755748 for additional aggregation pathway diagrams and plots.
82.
M.
Cecchini
,
F.
Rao
,
M.
Seeber
, and
A.
Caflisch
,
J. Chem. Phys.
121
,
10748
(
2004
).
83.
J.
Straub
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
62
,
437
(
2011
).
84.
D.
Hong
and
A.
Fink
,
Biochemistry
44
,
16701
(
2005
).
86.
S.
Chen
,
V.
Berthelier
,
J.
Hamilton
,
B.
O'Nuallain
, and
R.
Wetzel
,
Biochemistry
41
,
7391
(
2002
).
87.
H.
Han
,
P.
Weinreb
, and
P.
Lansbury
,
Chem. Biol.
2
,
163
(
1995
).
88.
J.
Jarrett
,
E.
Berger
, and
P.
Lansbury
 Jr.
,
Biochemistry
32
,
4693
(
1993
).
89.
M.
Li
,
N.
Co
,
G.
Reddy
,
C.
Hu
,
J.
Straub
, and
D.
Thirumalai
,
Phys. Rev. Lett.
105
,
218101
(
2010
).
90.
S.
Petty
and
S.
Decatur
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
14272
(
2005
).

Supplementary Material

You do not currently have access to this content.