We introduce a sequence-dependent parametrization for a coarse-grained DNA model [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys.134, 085101 (2011)] https://doi.org/10.1063/1.3552946 originally designed to reproduce the properties of DNA molecules with average sequences. The new parametrization introduces sequence-dependent stacking and base-pairing interaction strengths chosen to reproduce the melting temperatures of short duplexes. By developing a histogram reweighting technique, we are able to fit our parameters to the melting temperatures of thousands of sequences. To demonstrate the flexibility of the model, we study the effects of sequence on: (a) the heterogeneous stacking transition of single strands, (b) the tendency of a duplex to fray at its melting point, (c) the effects of stacking strength in the loop on the melting temperature of hairpins, (d) the force-extension properties of single strands, and (e) the structure of a kissing-loop complex. Where possible, we compare our results with experimental data and find a good agreement. A simulation code called oxDNA, implementing our model, is available as a free software.

1.
W.
Saenger
,
Principles of Nucleic Acid Structure
(
Springer-Verlag
,
New York
,
1984
).
3.
J.
Bath
,
S. J.
Green
, and
A. J.
Turberfield
,
Angew. Chem., Int. Ed.
117
,
4432
(
2005
).
4.
J.
Bath
,
S. J.
Green
,
K. E.
Allan
, and
A. J.
Turberfield
,
Small
5
,
1513
(
2009
).
5.
E.
Winfree
,
F. R.
Liu
,
L. A.
Wenzler
, and
N. C.
Seeman
,
Nature (London)
394
,
539
(
1998
).
6.
P. W. K.
Rothemund
,
Nature (London)
440
,
297
(
2006
).
7.
J.
Šponer
,
K. E.
Riley
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
10
,
2595
(
2008
).
8.
A.
Pérez
,
A.
Noy
,
F.
Lankaš
,
F. J.
Luque
, and
M.
Orozco
,
Nucleic Acids Res.
32
,
6144
(
2004
).
9.
P.
Hobza
and
J.
Šponer
,
Chem. Rev.
99
,
3247
(
1999
).
10.
J.
Šponer
 et al.,
Chem.- Eur. J.
12
,
2854
(
2006
).
11.
D.
Svozil
,
P.
Hobza
, and
J.
Šponer
,
J. Phys. Chem. B
114
,
1191
(
2010
).
12.
J.
Šponer
,
P.
Jurečka
, and
P.
Hobza
,
J. Am. Chem. Soc.
126
,
10142
(
2004
).
13.
W. D.
Cornell
 et al.,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
14.
B. R.
Brooks
 et al.,
J. Comput. Chem.
4
,
187
(
1983
).
15.
A.
Pérez
,
F. J.
Luque
, and
M.
Orozco
,
Acc. Chem. Res.
45
,
196
(
2012
).
16.
E. J.
Sambriski
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
Biophys. J.
96
,
1675
(
2009
).
17.
J. C.
Araque
,
A. Z.
Panagiotopoulos
, and
M. A.
Robert
,
J. Chem. Phys.
134
,
165103
(
2011
).
18.
M. C.
Linak
,
R.
Tourdot
, and
K. D.
Dorfman
,
J. Chem. Phys.
135
,
205102
(
2011
).
19.
K.
Drukker
,
G.
Wu
, and
G. C.
Schatz
,
J. Chem. Phys.
114
,
579
(
2001
).
20.
M.
Sales-Pardo
,
R.
Guimera
,
A. A.
Moreira
,
J.
Widom
, and
L.
Amaral
,
Phys. Rev. E
71
,
051902
(
2005
).
21.
M.
Kenward
and
K. D.
Dorfman
,
J. Chem. Phys.
130
,
095101
(
2009
).
22.
T. E.
Ouldridge
,
I. G.
Johnston
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
130
,
065101
(
2009
).
23.
T. A.
Knotts
 IV
,
N.
Rathore
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
J. Chem. Phys.
126
,
084901
(
2007
).
24.
A.-M.
Florescu
and
M.
Joyeux
,
J. Chem. Phys.
135
,
085105
(
2011
).
25.
A.
Morriss-Andrews
,
J.
Rottler
, and
S. S.
Plotkin
,
J. Chem. Phys.
132
,
035105
(
2010
).
26.
A. V.
Savin
,
M. A.
Mazo
,
I. P.
Kikot
,
L. I.
Manevitch
, and
A. V.
Onufriev
,
Phys. Rev. B
83
,
245406
(
2011
).
27.
P. D.
Dans
,
A.
Zeida
,
M. R.
Machado
, and
S.
Pantano
,
J. Chem. Theory Comput.
6
,
1711
(
2010
).
28.
A.
Savelyev
and
G. A.
Papoian
,
Biophys. J.
96
,
4044
(
2009
).
29.
N. B.
Becker
and
R.
Everaers
,
Phys. Rev. E
76
,
021923
(
2007
).
30.
F.
Lankaš
,
Innovations in Biomolecular Modeling and Simulations
,
RSC Biomolecular Sciences Vol. 2
(
The Royal Society of Chemistry
,
2012
).
31.
T.
Dauxois
,
M.
Peyrard
, and
A. R.
Bishop
,
Phys. Rev. E
47
,
684
(
1993
).
32.
C.
Nisoli
and
A. R.
Bishop
,
Phys. Rev. Lett.
107
,
068102
(
2011
).
33.
S.
Cocco
and
R.
Monasson
,
Phys. Rev. Lett.
83
,
5178
(
1999
).
34.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
Phys. Rev. Lett.
104
,
178101
(
2010
).
35.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
134
,
085101
(
2011
).
36.
T. E.
Ouldridge
, “
Coarse-grained modelling of DNA and DNA nanotechnology
,” D.Phil. dissertation (
University of Oxford
,
2011
), available at http://tinyurl.com/7ycbx7c.
37.
F.
Romano
,
A.
Hudson
,
J. P. K.
Doye
,
T. E.
Ouldridge
, and
A. A.
Louis
,
J. Chem. Phys.
136
,
215102
(
2012
).
38.
C.
De Michele
,
L.
Rovigatti
,
T.
Bellini
, and
F.
Sciortino
,
Soft Matter
8
,
8388
(
2012
).
39.
C.
Matek
,
T. E.
Ouldridge
,
A.
Levy
,
J. P. K.
Doye
, and
A. A.
Louis
, “
DNA Cruciform Arms Nucleate through a Correlated but Asynchronous Cooperative Mechanism
,”
J. Phys. Chem. B
(to be published).
40.
C.
Calladine
and
H.
Drew
,
Understanding DNA: The Molecule and How It Works
(
Academic
,
1997
).
41.
W. K.
Olson
,
A. A.
Gorin
,
X.-J.
Lu
,
L. M.
Hock
, and
V. B.
Zhurkin
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
11163
(
1998
).
42.
S.
Geggier
and
A.
Vologodskii
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
15421
(
2010
).
43.
B.
Basham
,
G. P.
Schroth
, and
P. S.
Ho
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
6464
(
1995
).
44.
We use poly-dC,dA,dT, and dG notation for DNA sequences with repeated nucleotide content to distinguish them from RNA sequences, which are referred to with rC, rA, rU, and rG.
45.
B.
Alberts
 et al.,
Molecular Biology of the Cell
, 4th ed. (
Garland Science
,
2002
).
46.
V.
Ortiz
and
J. J.
de Pablo
,
Phys. Rev. Lett.
106
,
238107
(
2011
).
47.
J.
SantaLucia
 Jr.
,
Proc. Natl. Acad. Sci. U.S.A.
17
,
1460
(
1998
).
48.
J.
SantaLucia
 Jr.
and
D.
Hicks
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
415
(
2004
).
49.
J. N.
Zadeh
 et al.,
J. Comput. Chem.
32
,
170
(
2011
).
50.
N. R.
Markham
and
M.
Zuker
,
Methods Mol. Bio.
453
,
3
(
2008
).
51.
N. R.
Markham
and
M.
Zuker
,
Nucleic Acids Res.
33
,
W577
(
2005
).
53.
B. H.
Zimm
,
J. Chem. Phys.
33
,
1349
(
1960
).
54.
D.
Poland
and
H. A.
Scheraga
,
J. Chem. Phys.
45
,
1464
(
1966
).
55.
D.
Poland
and
H. A.
Scheraga
,
Theory of Helix-Coil Transitions in Biopolymers: Statistical Mechanical Theory of Order-disorder Transitions in Biological Macromolecules
(
Academic
,
New York
,
1970
).
56.
D.
Jost
and
R.
Everaers
,
Biophys. J.
96
,
1056
(
2009
).
57.
A.
Krueger
,
E.
Protozanova
, and
M. D.
Frank-Kamenetskii
,
Biophys. J.
90
,
3091
(
2006
).
58.
T.
Ambjörnsson
,
S. K.
Banik
,
O.
Krichevsky
, and
R.
Metzler
,
Phys. Rev. Lett.
97
,
128105
(
2006
).
59.
T.
Ambjörnsson
,
S. K.
Banik
,
O.
Krichevsky
, and
R.
Metzler
,
Biophys. J.
92
,
2674
(
2007
).
60.
J. M.
Huguet
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
107
,
15431
(
2010
).
61.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Phys.: Condens. Matter
22
,
104102
(
2010
).
62.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
63.
D.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
New York, NY
,
2005
).
64.
G.
Torrie
and
J. P.
Valleau
,
J. Comp. Phys.
23
,
187
(
1977
).
65.
W.-S.
Chen
 et al.,
Phys. Rev. Lett.
105
,
218104
(
2010
).
66.
S.
Whitelam
,
E. H.
Feng
,
M. F.
Hagan
, and
P. L.
Geissler
,
Soft Matter
5
,
1521
(
2009
).
67.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 1st ed. (
Academic
,
Orlando, FL
,
1996
).
68.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
131
,
014504
(
2009
).
69.
J.
Holbrook
,
M.
Capp
,
R.
Saecker
, and
M.
Record
,
Biochemistry
38
,
8409
(
1999
).
70.
S.
Nonin
,
J.-L.
Leroy
, and
M.
Gueron
,
Biochemistry
34
,
10652
(
1995
).
71.
D. Y.
Zhang
and
E.
Winfree
,
J. Am. Chem. Soc.
131
,
17303
(
2009
).
72.
N. L.
Goddard
,
G.
Bonnet
,
O.
Krichevsky
, and
A.
Libchaber
,
Phys. Rev. Lett.
85
,
2400
(
2000
).
73.
Y.
Seol
,
G. M.
Skinner
,
K.
Visscher
,
A.
Buhot
, and
A.
Halperin
,
Phys. Rev. Lett.
98
,
158103
(
2007
).
74.
Y.
Seol
,
G. M.
Skinner
, and
K.
Visscher
,
Phys. Rev. Lett.
93
,
118102
(
2004
).
75.
G.
Mishra
,
D.
Giri
, and
S.
Kumar
,
Phys. Rev. E
79
,
031930
(
2009
).
76.
M.-N.
Dessinges
 et al.,
Phys. Rev. Lett.
89
,
248102
(
2002
).
77.
S. B.
Smith
,
Y.
Cui
, and
C.
Bustamante
,
Science
271
,
795
(
1996
).
78.
Y.
Zhang
,
H.
Zhou
, and
Z.-C.
Ou-Yang
,
Biophys. J.
81
,
1133
(
2001
).
79.
A.
Montanari
and
M.
Mézard
,
Phys. Rev. Lett.
86
,
2178
(
2001
).
80.
J.
Bois
 et al.,
Nucleic Acids Res.
33
,
4090
(
2005
).
81.
R. M.
Dirks
and
N. A.
Pierce
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15275
(
2004
).
82.
S.
Venkataraman
,
R. M.
Dirks
,
P. W. K.
Rothemund
,
E.
Winfree
, and
N. A.
Pierce
,
Nat. Nanotechnol.
2
,
490
(
2007
).
83.
S. J.
Green
,
J.
Bath
, and
A. J.
Turberfield
,
Phys. Rev. Lett.
101
,
238101
(
2008
).
84.
P.
Yin
,
H. M.
Choi
,
C. R.
Calvert
, and
N. A.
Pierce
,
Nature (London)
451
,
318
(
2008
).
85.
R. A.
Muscat
,
J.
Bath
, and
A. J.
Turberfield
,
Nano Lett.
11
,
982
(
2011
).
86.
S. J.
Green
,
D.
Lubrich
, and
A. J.
Turberfield
,
Biophys. J.
91
,
2966
(
2006
).
87.
B. M.
Mladek
,
J.
Fornleitner
,
F. J.
Martinez-Veracoechea
,
A.
Dawid
, and
D.
Frenkel
,
Phys. Rev. Lett.
108
,
268301
(
2012
).
You do not currently have access to this content.