13C and 15N chemical shift (CS) interaction is a sensitive probe of structure and dynamics in a wide variety of biological and inorganic systems, and in the recent years several magic angle spinning NMR approaches have emerged for residue-specific measurements of chemical shift anisotropy (CSA) tensors in uniformly and sparsely enriched proteins. All of the currently existing methods are applicable to slow and moderate magic angle spinning (MAS) regime, i.e., MAS frequencies below 20 kHz. With the advent of fast and ultrafast MAS probes capable of spinning frequencies of 40–100 kHz, and with the superior resolution and sensitivity attained at such high frequencies, development of CSA recoupling techniques working under such conditions is necessary. In this work, we present a family of R-symmetry based pulse sequences for recoupling of 13C/15N CSA interactions that work well in both natural abundance and isotopically enriched systems. We demonstrate that efficient recoupling of either first-rank (σ1) or second-rank (σ2) spatial components of CSA interaction is attained with appropriately chosen γ-encoded RNnv symmetry sequences. The advantage of these γ-encoded RNnv-symmetry based CSA (RNCSA) recoupling schemes is that they are suitable for CSA recoupling under a wide range of MAS frequencies, including fast MAS regime. Comprehensive analysis of the recoupling properties of these RNnv symmetry sequences reveals that the σ1-CSA recoupling symmetry sequences exhibit large scaling factors; however, the partial homonuclear dipolar Hamiltonian components are symmetry allowed, which makes this family of sequences suitable for CSA measurements in systems with weak homonuclear dipolar interactions. On the other hand, the γ-encoded symmetry sequences for σ2-CSA recoupling have smaller scaling factors but they efficiently suppress the homonuclear dipole-dipole interactions. Therefore, the latter family of sequences is applicable for measurements of CSA parameters in systems with strong homonuclear dipolar couplings, such as uniformly-13C labeled biological solids. We demonstrate RNCSA NMR experiments and numerical simulations establishing the utility of this approach to the measurements of 13C and 15N CSA parameters in model compounds, [15N]-N-acetyl-valine (NAV), [U-13C, 15N]-alanine, [U-13C,15N]-histidine, and present the application of this approach to [U-13C/15N]-Tyr labeled C-terminal domain of HIV-1 CA protein.

1.
W. S.
Veeman
,
Prog. Nucl. Magn. Reson. Spectrosc.
16
,
193
(
1984
).
2.
A. C.
DeDios
,
J. G.
Pearson
, and
E.
Oldfield
,
Science
260
,
1491
(
1993
).
3.
N.
Tjandra
,
A.
Szabo
, and
A.
Bax
,
J. Am. Chem. Soc.
118
,
6986
(
1996
).
4.
D. A.
Case
,
Curr. Opin. Struct. Biol.
8
,
624
(
1998
).
5.
D. K.
Lee
,
R. J.
Wittebort
, and
A.
Ramamoorthy
,
J. Am. Chem. Soc.
120
,
8868
(
1998
).
6.
A. G.
Palmer
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
129
(
2001
).
7.
E. Y.
Chekmenev
,
R. Z.
Xu
,
M. S.
Mashuta
, and
R. J.
Wittebort
,
J. Am. Chem. Soc.
124
,
11894
(
2002
).
8.
H. H.
Sun
,
L. K.
Sanders
, and
E.
Oldfield
,
J. Am. Chem. Soc.
124
,
5486
(
2002
).
9.
J.
Bim
,
A.
Poon
,
Y.
Mao
, and
A.
Ramamoorthy
,
J. Am. Chem. Soc.
126
,
8529
(
2004
).
10.
S.
Wi
,
H. H.
Sun
,
E.
Oldfield
, and
M.
Hong
,
J. Am. Chem. Soc.
127
,
6451
(
2005
).
11.
B. J.
Wylie
,
T.
Franks
,
D. T.
Graesser
, and
C. M.
Rienstra
,
J. Am. Chem. Soc.
127
,
11946
(
2005
).
12.
A.
McDermott
and
T.
Polenova
,
Curr. Opin. Struct. Biol.
17
,
617
(
2007
).
13.
B. J.
Wylie
,
L. J.
Sperling
,
A. J.
Nieuwkoop
,
W. T.
Franks
,
E.
Oldfield
, and
C. M.
Rienstra
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
16974
(
2011
).
14.
E.
Czinki
,
A. G.
Csaszar
,
G.
Magyarfalvi
,
P. R.
Schreiner
, and
W. D.
Allen
,
J. Am. Chem. Soc.
129
,
1568
(
2007
).
15.
Y.
Yarimagaev
,
P. N.
Tutunjian
, and
J. S.
Waugh
,
J. Magn. Reson.
47
,
51
(
1982
).
16.
T.
Gullion
,
J. Magn. Reson.
85
,
614
(
1989
).
17.
R.
Tycko
,
G.
Dabbagh
, and
P. A.
Mirau
,
J. Magn. Reson.
85
,
265
(
1989
).
18.
L.
Frydman
,
G. C.
Chingas
,
Y. K.
Lee
,
P. J.
Grandinetti
,
M. A.
Eastman
,
G. A.
Barrall
, and
A.
Pines
,
J. Chem. Phys.
97
,
4800
(
1992
).
19.
Z. H.
Gan
,
J. Am. Chem. Soc.
114
,
8307
(
1992
).
20.
J. Z.
Hu
,
A. M.
Orendt
,
D. W.
Alderman
,
R. J.
Pugmire
,
C. H.
Ye
, and
D. M.
Grant
,
Solid State Nucl. Magn. Reson.
3
,
181
(
1994
).
21.
O. N.
Antzutkin
,
S. C.
Shekar
, and
M. H.
Levitt
,
J. Magn. Reson., Ser. A
115
,
7
(
1995
).
22.
J. Z.
Hu
,
W.
Wang
,
F.
Liu
,
M. S.
Solum
,
D. W.
Alderman
,
R. J.
Pugmire
, and
D. M.
Grant
,
J. Magn. Reson., Ser A
113
,
210
(
1995
).
23.
C.
Crockford
,
H.
Geen
, and
J. J.
Titman
,
Chem. Phys. Lett.
344
,
367
(
2001
).
24.
S. F.
Liu
,
J. D.
Mao
, and
K.
Schmidt-Rohr
,
J. Magn. Reson.
155
,
15
(
2002
).
25.
J. C. C.
Chan
and
R.
Tycko
,
J. Chem. Phys.
118
,
8378
(
2003
).
26.
B.
Elena
,
S.
Hediger
, and
L.
Emsley
,
J. Magn. Reson.
160
,
40
(
2003
).
27.
L. M.
Shao
,
C.
Crockford
,
H.
Geen
,
G.
Grasso
, and
J. J.
Titman
,
J. Magn. Reson.
167
,
75
(
2004
).
28.
M.
Strohmeier
and
D. M.
Grant
,
J. Magn. Reson.
168
,
296
(
2004
).
29.
S. R.
Kiihne
,
A. F. L.
Creemers
,
J.
Lugtenburg
, and
H. J. M.
de Groot
,
J. Magn. Reson.
172
,
1
(
2005
).
30.
Y.
Nishiyama
,
T.
Yamazaki
, and
T.
Terao
,
J. Chem. Phys.
124
,
064304
(
2006
).
31.
R. M.
Orr
and
M. J.
Duer
,
Solid State Nucl. Magn. Reson.
30
,
1
(
2006
).
32.
I.
Hung
and
Z. H.
Gan
,
J. Magn. Reson.
213
,
196
(
2011
).
33.
M.
Eden
and
M. H.
Levitt
,
J. Chem. Phys.
111
,
1511
(
1999
).
34.
M.
Carravetta
,
M.
Eden
,
X.
Zhao
,
A.
Brinkmann
, and
M. H.
Levitt
,
Chem. Phys. Lett.
321
,
205
(
2000
).
35.
A.
Brinkmann
and
M. H.
Levitt
,
J. Chem. Phys.
115
,
357
(
2001
).
36.
M. H.
Levitt
, in
Encyclopedia of Nuclear Magnetic Resonance
, edited by
D. M.
Grant
and
R. K.
Harris
(
Wiley
,
Chichester
,
2002
), pp.
165
.
37.
G.
Hou
,
S.
Paramasivam
,
I. J. L.
Byeon
,
A. M.
Gronenborn
, and
T.
Polenova
,
Phys. Chem. Chem. Phys.
12
,
14873
(
2010
).
38.
Y.
Han
,
J.
Ahn
,
J.
Concel
,
I. J.
Byeon
,
A. M.
Gronenborn
,
J.
Yang
, and
T.
Polenova
,
J. Am. Chem. Soc.
132
,
1976
(
2010
).
39.
G. J.
Hou
,
I. J. L.
Byeon
,
J.
Ahn
,
A. M.
Gronenborn
, and
T.
Polenova
,
J. Am. Chem. Soc.
133
,
18646
(
2011
).
40.
G.
Neue
and
C.
Dybowski
,
Solid State Nucl. Magn. Reson.
7
,
333
(
1997
).
41.
X.
Zhao
,
M.
Eden
, and
M. H.
Levitt
,
Chem. Phys. Lett.
342
,
353
(
2001
).
42.
M.
Eden
,
Chem. Phys. Lett.
378
,
55
(
2003
).
43.
G. J.
Hou
 et al,
J. Am. Chem. Soc.
133
,
3943
(
2011
).
44.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
45.
V. B.
Cheng
,
H. H.
Suzukawa
, and
M.
Wolfsber
,
J. Chem. Phys.
59
,
3992
(
1973
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4754149 for additional figures and tables.
47.
P.
Schanda
,
B. H.
Meier
, and
M.
Ernst
,
J. Am. Chem. Soc.
132
,
15957
(
2010
).
48.
C.
Berthet-Colominas
,
S.
Monaco
,
A.
Novelli
,
G.
Sibai
,
F.
Mallet
, and
S.
Cusack
,
EMBO J.
18
,
1124
(
1999
).
49.
F.
Ternois
,
J.
Sticht
,
S.
Duquerroy
,
H. G.
Krausslich
, and
F. A.
Rey
,
Nat. Struct. Mol. Biol.
12
,
678
(
2005
).
50.
J.
Jiang
 et al,
Virology
421
,
253
(
2011
).
51.
I. J.
Byeon
 et al,
J. Am. Chem. Soc.
134
,
6455
(
2012
).
52.
J.
Yang
,
M. L.
Tasayco
, and
T.
Polenova
,
J. Am. Chem. Soc.
131
,
13690
(
2009
).
53.
P. L.
Weber
,
L. C.
Sieker
,
T. S. A.
Samy
,
B. R.
Reid
, and
G. P.
Drobny
,
J. Am. Chem. Soc.
109
,
5842
(
1987
).
54.
J. J.
Buffy
,
A. J.
Waring
,
R. I.
Lehrer
, and
M.
Hong
,
Biochemistry
42
,
13725
(
2003
).

Supplementary Material

You do not currently have access to this content.