The concept of a “consistent,” Kohn-Sham (KS) density functional theory (DFT) is discussed, where the functional is able to provide good total energies and its self-consistent potential is such that the KS eigenvalues correspond to accurate approximations to the principal ionization potentials for the molecule. Today, none of the vast number of DFT approximations show this property. The one exception is the ab initio dft method built upon the optimized effective potential strategy for exchange and correlation. This qualifies as a DFT method because it represents the correlated density as a single determinant and by imposing that condition, generates local exchange and correlation operators which are used in self-consistent solutions of the orbitals and eigenvalues. Such a “consistent” DFT shares many of the properties of the Dyson equation, but without its frequency dependence and associated complications. The relationship between ab initio dft based on MBPT2 functional and GW method is discussed. Ab initio dft provides a self-consistent, frequency independent, effective independent particle alternative with a local correlation potential.

1.
P.
Verma
,
A.
Perera
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
524
,
10
(
2012
).
2.
R. J.
Bartlett
,
V. F.
Lotrich
, and
I. V.
Schweigert
,
J. Chem. Phys.
123
,
062205
(
2005
).
3.
R. J.
Bartlett
,
I. V.
Schweigert
, and
V. F.
Lotrich
,
J. Mol. Struct.: THEOCHEM
771
,
1
(
2006
).
4.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
1269
(
2002
).
5.
I.
Grabowski
,
S.
Hirata
,
S.
Ivanov
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
4415
(
2002
).
6.
I. V.
Schweigert
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
J. Chem. Phys.
125
,
104108
(
2006
).
7.
R. J.
Bartlett
,
Chem. Phys. Lett.
484
,
1
(
2009
).
8.
V. F.
Lotrich
,
R. J.
Bartlett
, and
I.
Grabowski
,
Chem. Phys. Lett.
405
,
43
(
2005
).
9.
A. J.
Layzer
,
Phys. Rev.
129
,
897
(
1963
).
10.
H. A.
Kurtz
and
Y.
Öhrn
,
J. Chem. Phys.
69
,
1162
(
1978
).
11.
W. P.
Reinhardt
and
J. D.
Doll
,
J. Chem. Phys.
50
,
2767
(
1969
).
12.
P.
Duffy
,
D. P.
Chong
,
M. E.
Casida
, and
D. R.
Salahub
,
Phys. Rev. A
50
,
4707
(
1994
).
13.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
14.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
15.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
16.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
17.
J.
Katriel
and
E. R.
Davidson
,
Proc. Natl. Acad. Sci. U.S.A.
77
,
4403
(
1980
).
18.
G.
Zhang
and
C. B.
Musgrave
,
J. Phys. Chem. A
111
,
1554
(
2007
).
19.
M. J.
Allen
and
D. J.
Tozer
,
Mol. Phys.
100
,
433
(
2002
).
20.
T.
Körzdörfer
and
S.
Kümmel
,
Phys. Rev. B
82
,
155206
(
2010
).
21.
D. P.
Chong
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
22.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
23.
A.
Görling
,
Phys. Rev. A
57
,
3433
(
1998
).
24.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
6468
(
2002
).
25.
D.
Bokhan
and
R. J.
Bartlett
,
Phys. Rev. A
73
,
022502
(
2006
).
26.
D.
Bokhan
and
R. J.
Bartlett
,
J. Phys. Chem.
127
,
174102
(
2007
).
27.
M.
Nooijen
and
R. J.
Bartlett
,
J. Chem. Phys.
106
,
6449
(
1997
).
28.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
111
,
8785
(
1999
).
29.
J. Thom H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
30.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
31.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database No. 101, Release 12, edited by
R. D.
Johnson
 III
,
2005
, see http://srdata.nist.gov/cccbdb.
32.
W. L.
Jolly
,
K. D.
Bomben
, and
C. J.
Eyermann
,
At. Data Nucl. Data Tables
31
,
433
(
1984
).
33.
34.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
136
,
044105
(
2012
).
35.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
36.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
37.
R. J.
Bartlett
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
1995
), pp.
1047
1131
.
38.
H.
Jiang
and
E.
Engel
,
J. Chem. Phys.
125
,
184108
(
2006
).
39.
P.
Mori-Sánchez
,
Q.
Wu
, and
W.
Yang
,
J. Chem. Phys.
123
,
062204
(
2005
).
40.
D.
Rohr
,
O.
Gritsenko
, and
E. J.
Baerends
,
Chem. Phys. Lett.
432
,
336
(
2006
).
41.
P. O.
Widmark
,
P.
Malmqvist
, and
B. O.
Roos
,
Theor. Chem. Acta
77
,
291
(
1990
).
42.
I. V.
Schweigert
and
R. J.
Bartlett
,
J. Chem. Phys.
129
,
124109
(
2008
).
43.
N. I.
Gidopoulos
,
Phys. Rev. A
83
,
040502
(
2011
).
44.
S.
Hirata
,
S.
Ivanov
,
R. J.
Bartlett
, and
I.
Grabowski
,
Phys. Rev. A
71
,
032507
(
2005
).
45.
D.
Bokhan
and
R. J.
Bartlett
,
Chem. Phys. Lett.
427
,
466
(
2006
).
46.
O.
Goscinski
,
B. T.
Pickup
, and
G.
Purvis
,
Chem. Phys. Lett.
22
,
167
(
1973
).
47.
I.
Grabowski
,
A. M.
Teale
,
S.
Śmiga
, and
R. J.
Bartlett
,
J. Chem. Phys.
135
,
114111
(
2011
).
48.
T. J.
Watson
and
R. J.
Bartlett
, “
Infinite order relaxation effects for core ionization energies with a variational coupled cluster ansatz
,”
Chem. Phys. Lett.
(in press).
49.
J. C.
Slater
,
J. B.
Mann
,
T. M.
Wilson
, and
J. H.
Wood
,
Phys. Rev.
184
,
672
(
1969
).
50.
O.
Gritsenko
,
P.
Schipper
, and
E.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
51.
I.
Dabo
,
A.
Ferretti
,
N.
Poilvert
,
Y.
Li
,
N.
Marzari
, and
M.
Cococcioni
,
Phys. Rev. B
82
,
115121
(
2010
).
52.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
,
Phys. Rev. Lett.
105
,
266802
(
2010
).
53.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
80
,
085202
(
2009
).
54.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
55.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
56.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M. W.
Gill
,
J. Comput. Chem.
20
,
921
(
1999
).
57.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
58.
T.
Tsuneda
,
J.-W.
Song
,
S.
Suzuki
, and
K.
Hirao
,
J. Chem. Phys.
133
,
174101
(
2010
).
59.
Y.
Imamura
,
R.
Kobayashi
, and
H.
Nakai
,
J. Chem. Phys.
134
,
124113
(
2011
).
60.
Y.
Imamura
,
R.
Kobayashi
, and
H.
Nakai
,
Chem. Phys. Lett.
513
,
130
(
2011
).
61.
N. I.
Gidopoulos
and
N. N.
Lathiotakis
,
J. Chem. Phys.
136
,
224109
(
2012
).
62.
A.
Beste
and
R. J.
Bartlett
,
J. Chem. Phys.
123
,
154103
(
2005
).
63.
M.
Nooijen
and
J. G.
Snijders
,
J. Chem. Phys.
102
,
1681
(
1995
).
65.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
You do not currently have access to this content.