Due to remarkable advances in colloid synthesis techniques, systems of squares and cubes, once an academic abstraction for theorists and simulators, are nowadays an experimental reality. By means of a free minimization of the free-energy functional, we apply fundamental measure theory to analyze the phase behavior of parallel hard squares and hard cubes. We compare our results with those obtained by the traditional approach based on the Gaussian parameterization, finding small deviations and good overall agreement between the two methods. For hard squares, our predictions feature at intermediate packing fraction a smectic phase, which is however expected to be unstable due to thermal fluctuations. Due to this inconsistency, we cannot determine unambiguously the prediction of the theory for the expected fluid-to-crystal transition of parallel hard squares, but we deduce two alternative scenarios: (i) a second-order transition with a coexisting vacancy-rich crystal or (ii) a higher-density first-order transition with a coexisting crystal characterized by a lower vacancy concentration. In accordance with previous studies, a second-order transition with a high vacancy concentration is predicted for hard cubes.

1.
W. W.
Wood
and
J. D.
Jacobson
,
J. Chem. Phys.
27
,
1207
(
1957
).
2.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
27
,
1208
(
1957
).
3.
R. W.
Zwanzig
,
J. Chem. Phys.
24
,
855
(
1956
).
4.
W. G.
Hoover
and
A. G.
Rocco
,
J. Chem. Phys.
34
,
1059
(
1961
);
W. G.
Hoover
and
A. G.
Rocco
,
J. Chem. Phys.
36
,
3141
(
1962
).
5.
A. L.
Beyerlein
,
W. G.
Rudd
,
Z. W.
Salsburg
, and
M.
Buynoski
,
J. Chem. Phys.
53
,
1532
(
1970
).
6.
W. G.
Rudd
and
H. L.
Frisch
,
J. Comput. Phys.
7
,
394
(
1971
).
7.
C.
Carlier
and
H. L.
Frisch
,
Phys. Rev. A
6
,
1153
(
1972
).
8.
F. H.
Ree
and
T.
Ree
,
J. Chem. Phys.
56
,
5434
(
1972
).
9.
H. L.
Frisch
,
J.
Roth
,
B. D.
Krawchuk
,
P.
Sofinski
, and
M.
Bishop
,
Phys. Rev. A
22
,
740
(
1980
).
10.
W. G.
Hoover
,
C. G.
Hoover
, and
M. N.
Bannerman
,
J. Stat. Phys.
136
,
715
(
2009
).
11.
A.
Beyerlein
,
J. Comput. Phys.
7
,
403
(
1971
).
12.
E. A.
Jagla
,
Phys. Rev. E
58
,
4701
(
1998
).
13.
B.
Groh
and
B.
Mulder
,
J. Chem. Phys.
114
,
3653
(
2001
).
14.
M.
Dijktra
and
D.
Frenkel
,
Phys. Rev. Lett.
72
,
298
(
1994
).
15.
M.
Dijkstra
,
D.
Frenkel
, and
J.-P.
Hansen
,
J. Chem. Phys.
101
,
3179
(
1994
).
16.
17.
For a review of fundamental measure theory see
P.
Tarazona
,
J.
Cuesta
, and
Y.
Martínez-Ratón
, in
Theory and Simulation of Hard-Sphere Fluids, and Related Systems
, Lecture Notes in Physics, Vol. 753, edited by
A.
Mulero
(
Springer
,
Berlin/Heidelberg
,
2008
), pp.
247
341
;
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
[PubMed]
18.
J. A.
Cuesta
and
Y.
Martínez-Ratón
,
J. Chem. Phys.
107
,
6379
(
1997
).
19.
Y.
Martínez-Ratón
and
J. A.
Cuesta
,
J. Chem. Phys.
111
,
317
(
1999
).
20.
L.
Rossi
,
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
,
D. J.
Pine
, and
A. P.
Philipse
,
Soft Matter
7
,
4139
(
2011
).
21.
K.
Zhao
,
R.
Bruinsma
, and
T. G.
Mason
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
2684
(
2011
).
22.
F.
Smallenburg
,
L.
Filion
,
M.
Marechal
, and
M.
Dijkstra
, “
Vacancy-stabilized crystalline order in hard cubes
,”
PNAS
(in press).
23.
X.
Zhang
,
Z.
Zhang
, and
S. C.
Glotzer
,
J. Phys. Chem. C
111
,
4132
(
2007
).
24.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
81
,
061105
(
2010
).
25.
C.
Avendaño
and
F. A.
Escobedo
,
Soft Matter
8
,
4675
(
2012
).
26.
R.
Ni
,
A. P.
Gantapara
,
J.
de Graaf
,
R.
van Roij
, and
M.
Dijkstra
,
Soft Matter
8
,
8826
(
2012
).
27.
M.
Marechal
,
U.
Zimmermann
, and
H.
Löwen
,
J. Chem. Phys.
136
,
144506
(
2012
).
28.
H.
Hansen-Goos
and
K.
Mecke
,
Phys. Rev. Lett.
102
,
018302
(
2009
).
29.
H.
Hansen-Goos
and
K.
Mecke
,
J. Phys.: Condens. Matter
22
,
364107
(
2010
).
32.
Y.
Rosenfeld
,
M.
Schmidt
,
H.
Löwen
, and
P.
Tarazona
,
Phys. Rev. E
55
,
4245
(
1997
).
33.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
34.
B. B.
Laird
,
J. D.
McCoy
, and
A. D. J.
Haymet
,
J. Chem. Phys.
87
,
5449
(
1987
).
35.
R.
Ohnesorge
,
H.
Löwen
, and
H.
Wagner
,
Europhys. Lett.
22
,
245
(
1993
).
36.
M.
Oettel
,
S.
Görig
,
A.
Härtel
,
H.
Löwen
,
M.
Radu
, and
T.
Schilling
,
Phys. Rev. E
82
,
051404
(
2010
).
37.
R.
Roth
,
K.
Mecke
, and
M.
Oettel
,
J. Chem. Phys.
136
,
081101
(
2012
).
38.
See www.fftw.org for fast Fourier transform algorithms.
39.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
1992
).
40.
K. W.
Wojciechowksi
and
D.
Frenkel
,
Comput. Methods Sci. Technol.
10
,
235
(
2004
).
41.
R. E.
Peierls
,
Annales de l’Institut Henri Poincaré
5
,
177
(
1935
);
L. D.
Landau
,
Phys. Z. Sowjetunion
2
,
26
(
1937
).
42.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
43.
J. T.
Toner
and
D. R.
Nelson
,
Phys. Rev. B
23
,
316
(
1981
).
44.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
2006
).
45.
47.
A.
Parola
and
L.
Reatto
,
Phys. Rev. Lett.
53
,
2417
(
1984
).
48.
A.
Parola
and
L.
Reatto
, “
Recent developments of the hierarchical reference theory of fluids and its relation to the renormalization group
,”
Mol. Phys.
(in press).
You do not currently have access to this content.