In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH3COOH)n·H+, the feature related to the fragment ions (CH3COOH)H+·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH3COOH)·H+ and (CH3COOH)H+·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C–C bond cleavage product (CH3COOH)H+·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH3COOH)+ becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH3COOH)·CH3CO+. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9–15 eV.

1.
J. L.
Beauchamp
and
M. C.
Caserio
,
J. Am. Chem. Soc.
94
,
2638
(
1972
).
2.
D. G.
Hall
,
C.
Gupta
, and
T. H.
Marton
,
J. Am. Chem. Soc.
103
,
2416
(
1981
).
3.
S. T.
Graul
and
R. R.
Squires
,
Int. J. Mass Spectrom. Ion Process.
81
,
183
(
1987
).
4.
D. P.
Stevenson
,
J. Phys. Chem.
61
,
1453
(
1957
).
5.
Z.
Karpas
and
M.
Mcot-Ner
,
J. Phys. Chem.
93
,
1859
(
1989
).
6.
S. T.
Tsai
,
J. C.
Jiang
,
Y. T.
Lee
,
A. H.
Kung
,
S. H.
Lin
, and
C. K.
Ni
,
J. Chem. Phys.
111
,
3434
(
1999
).
7.
Y. J.
Shi
,
S.
Consta
,
A. K.
Das
,
B.
Mallik
,
D.
Lacey
, and
R. H.
Lipson
,
J. Chem. Phys.
116
,
6990
(
2002
).
8.
H. L.
Han
,
C.
Camacho
,
H. A.
Witek
, and
Y. P.
Lee
,
J. Chem. Phys.
134
,
144309
(
2011
).
9.
S.
Lam
,
Y. J.
Shi
,
N. J.
Mosey
,
T. K.
Woo
, and
R. H.
Lipson
,
J. Chem. Phys.
121
,
10006
(
2004
).
10.
G. S.
Fanourgakis
,
Y. J.
Shi
,
S.
Consta
, and
R. H.
Lipson
,
J. Chem. Phys.
119
,
6597
(
2003
).
11.
Y. B.
Pithawalla
,
C.
Covington
,
I.
McComish
,
I. N.
Germanenko
, and
M. S. E.
Shall
,
Int. J. Mass Spectrom.
218
,
49
(
2002
).
12.
P.
Franceschi
,
P.
Tosi
,
D.
Ascenzi
,
D.
Bassi
,
M.
Coreno
, and
M.
de Simone
,
Int. J. Mass Spectrom.
220
,
281
(
2002
).
13.
R.
Thissen
,
C.
Alcaraz
,
J.
Hepburn
,
M.
Vervloet
, and
O.
Dutuit
,
Int. J. Mass Spectrom.
199
,
201
(
2000
).
14.
G.
Vaidyanathan
,
M. T.
Coolbangh
,
W. R.
Peifer
, and
J. F.
Garvey
,
J. Chem. Phys.
94
,
1850
(
1991
).
15.
X.
Zhang
,
X.
Yang
, and
A. W.
Castleman
,
Chem. Phys. Lett.
185
,
298
(
1991
).
16.
S. Y.
Lee
,
D. N.
Shim
,
S. G.
Cho
,
K. H.
Jung
, and
K. W.
Jung
,
J. Mass Spectrom.
30
,
969
(
1995
).
17.
O.
Echt
,
D.
Kreisle
,
M.
Knapp
, and
E.
Recknagel
,
Chem. Phys. Lett.
108
,
401
(
1984
).
18.
M. S.
Ei-Shall
,
C.
Marks
,
L. W.
Sieck
, and
M.
Meot-Ner
,
J. Phys. Chem.
96
,
2045
(
1992
).
19.
S.
Morgan
,
R. G.
Keesee
, and
A. W.
Castleman
,
J. Am. Chem. Soc.
111
,
3841
(
1989
).
20.
S.
Morgan
and
A. W.
Castleman
,
J. Am. Chem. Soc.
109
,
2867
(
1987
).
21.
S.
Morgan
and
A. W.
Castleman
,
J. Phys. Chem.
93
,
4544
(
1989
).
22.
H.
Shinohara
and
N.
Nishi
,
Chem. Phys. Lett.
87
,
561
(
1982
).
23.
Y. J.
Hu
,
H. B.
Fu
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
154305
(
2006
).
24.
S. T.
Tsai
,
J. C.
Jiang
,
M. F.
Lin
,
Y. T.
Lee
, and
C. K.
Ni
,
J. Chem. Phys.
120
,
8979
(
2004
).
25.
Y. J.
Hu
,
H. B.
Fu
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
184308
(
2006
).
26.
R.
Parthasarathi
,
Y.
He
,
J. P.
Reilly
, and
K.
Raghavachari
,
J. Am. Chem. Soc.
132
,
1606
(
2010
).
28.
O.
Kostko
,
L.
Belau
,
K. R.
Wilson
, and
M.
Ahmed
,
J. Phys. Chem. A
112
,
9555
(
2008
).
29.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
,
J. Phys. Chem. A
111
,
10075
(
2007
).
30.
O.
Kostko
,
K.
Bravaya
,
A.
Krylov
, and
M.
Ahmed
,
Phys. Chem. Chem. Phys.
12
,
2860
(
2010
).
31.
J. L.
Derissen
,
J. Mol. Struct.
7
,
81
(
1971
).
32.
P. W.
Forysinski
,
P.
Zielke
,
D.
Luckhaus
,
J.
Corbett
, and
R.
Signorell
,
J. Chem. Phys.
134
,
094314
(
2011
).
33.
S. S.
Wang
,
R. H.
Kong
,
X. B.
Shan
,
Y. W.
Zhang
,
L. S.
Sheng
,
Z. Y.
Wang
,
L. Q.
Hao
, and
S. K.
Zhou
,
J. Synchrotron Radiat.
13
,
415
(
2006
).
34.
R. H.
Kong
,
X. B.
Shan
,
S. S.
Wang
,
Y. W.
Zhang
,
L. S.
Sheng
,
L. Q.
Hao
, and
Z. Y.
Wang
,
J. Electron Spectrosc. Relat. Phenom.
160
,
49
(
2007
).
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
36.
X.
Liu
,
W.
Zhang
,
Z.
Wang
,
M.
Huang
,
X.
Yang
,
L.
Tao
,
Y.
Sun
,
Y.
Sun
,
Y.
Xu
,
X.
Shan
,
F.
Liu
, and
L.
Sheng
,
J. Mass Spectrom.
44
,
404
(
2009
).
37.
Y.
Pan
,
L.
Zhang
,
T.
Zhang
,
H.
Guo
,
X.
Hong
,
L.
Sheng
, and
F.
Qi
,
Phys. Chem. Chem. Phys.
11
,
1189
(
2009
).
38.
H. B.
Fu
,
Y. J.
Hu
, and
E. R.
Bernstein
,
J. Chem. Phys.
124
,
024302
(
2006
).
39.
A.
Akhmetov
,
J. F.
Moore
,
G. L.
Gasper
,
P. J.
Koin
, and
L.
Hanley
,
J. Mass Spectrom.
45
,
137
(
2010
).
40.
Y. J.
Hu
,
H. B.
Fu
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
154309
(
2006
).
41.
D. J.
Knowles
and
A. J. C.
Nicholson
,
J. Chem. Phys.
60
,
1180
(
1974
).
42.
K.
Ohta
,
Y.
Matsuda
,
N.
Mikami
, and
A.
Fujii
,
J. Chem. Phys.
131
,
184304
(
2009
).
43.
W. D.
Allen
,
D. A.
Horner
,
R. L.
Dekock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
).
44.
V.
Galasso
and
F.
Pichierri
,
J. Phys. Chem. A
113
,
2534
(
2009
).
45.
Y. X.
Zhao
,
X. N.
Wu
,
J. B.
Ma
,
S. G.
He
, and
X. L.
Ding
,
J. Phys. Chem. C
114
,
12271
(
2010
).
46.
Y. X.
Zhao
,
J. Y.
Yuan
,
X. L.
Ding
,
S. G.
He
, and
W. J.
Zheng
,
Phys. Chem. Chem. Phys.
13
,
10084
(
2011
).
47.
Y.
Matsuda
,
A.
Yamada
,
K.
Hanaue
,
N.
Mikami
, and
A.
Fujii
,
Angew. Chem., Int. Ed.
49
,
4898
(
2010
).
48.
G. H.
Gardenier
,
M. A.
Johnson
, and
A. B.
McCoy
,
J. Phys. Chem. A
113
,
4772
(
2009
).
49.
M.
Hachiya
,
Y.
Matsuda
,
K.
Suhara
,
N.
Mikami
, and
A.
Fujii
,
J. Chem. Phys.
129
,
094306
(
2008
).
50.
J.
Guan
,
Y.
Hu
,
M.
Xie
, and
E. R.
Bernstein
,
Chem. Phys.
405
,
117
123
(
2012
).
51.
W. A.
Chupka
,
J. Chem. Phys.
30
,
191
(
1959
).
52.
L.
Claes
,
J. P.
Francois
, and
M. S.
Deleuze
,
J. Am. Chem. Soc.
125
,
7129
(
2003
).
53.
S.
Knippenberg
,
B.
Hajgate
,
J. P.
Francois
, and
M. S.
Deleuze
,
J. Phys. Chem. A
111
,
10834
(
2007
).
54.
J. W.
Hepburn
, in
Laser Techniques in Chemistry
, edited by
A.
Myers
and
T. R.
Rizzo
(
Wiley
,
New York
,
1995
).
55.
Y.
Hatano
,
Radiat. Environ. Biophys.
38
,
239
(
1999
).
56.
K.
Furuya
,
K.
Kimura
, and
T.
Hirayama
,
J. Chem. Phys.
97
,
1022
(
1992
).
57.
K.
Furuya
,
S.
Katsumata
, and
K.
Kimura
,
J. Electron Spectrosc. Relat. Phenom.
62
,
237
(
1993
).
58.
C. Y.
Ng
,
Int. J. Mass Spectrom.
200
,
357
(
2000
).
59.
H. K.
Woo
,
P.
Wang
,
K. C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Phys. Chem. A
108
,
9637
(
2004
).
60.
H. K.
Woo
,
P.
Wang
,
K.-C.
Lau
,
X.
Xing
,
C.
Chang
, and
C. Y.
Ng
,
J. Chem. Phys.
119
,
9333
(
2003
).
61.
M.-K.
Bahng
,
X.
Xing
,
S. J.
Baek
, and
C. Y.
Ng
,
J. Chem. Phys.
123
,
84311
(
2005
).
62.
See supplementary material at http://dx.doi.org/10.1063/1.4754273 for the structure of neutral HAc dimer.

Supplementary Material

You do not currently have access to this content.