We present an exact enumeration algorithm for identifying the native configuration—a maximally compact self-avoiding walk configuration that is also the minimum energy configuration for a given set of contact-energy schemes; the process is implicitly sequence-dependent. In particular, we show that the 25-step native configuration on a diamond lattice consists of two sheet-like structures and is the same for all the contact-energy schemes, {(−1, 0, 0); (−7, −3, 0); (−7, −3, −1); (−7, −3, 1)}; on a square lattice also, the 24-step native configuration is independent of the energy schemes considered. However, the designing sequence for the diamond lattice walk depends on the energy schemes used whereas that for the square lattice walk does not. We have calculated the temperature-dependent specific heat for these designed sequences and the four energy schemes using the exact density of states. These data show that the energy scheme (−7, −3, −1) is preferable to the other three for both diamond and square lattice because the associated sequences give rise to a sharp low-temperature peak. We have also presented data for shorter (23-, 21-, and 17-step) walks on a diamond lattice to show that this algorithm helps identify a unique minimum energy configuration by suitably taking care of the ground-state degeneracy. Interestingly, all these shorter target configurations also show sheet-like secondary structures.

1.
H.
Li
,
R.
Helling
,
C.
Tang
, and
N.
Wingreen
,
Science
273
,
666
(
1996
).
K. A.
Dill
,
Protein Sci.
8
,
1166
(
1999
).
[PubMed]
3.
K. A.
Dill
,
S.
Bromberg
,
K.
Yue
,
K. M.
Fiebig
,
D. P.
Yee
,
P. D.
Thomas
, and
H. S.
Chan
,
Protein Sci.
4
,
561
(
1995
).
4.
J.
Wang
and
W.
Wang
,
Nat. Struct. Biol.
6
,
1033
(
1999
);
[PubMed]
H. S.
Chan
,
Nat. Struct. Biol.
6
,
994
(
1999
);
[PubMed]
K.
Fan
and
W.
Wang
,
J. Mol. Biol.
328
,
921
(
2003
).
[PubMed]
5.
H. S.
Chan
,
Z.
Zhang
,
S.
Wallin
, and
Z.
Liu
,
Annu. Rev. Phys. Chem.
62
,
301
(
2011
);
[PubMed]
H. S.
Chan
,
S.
Shimizu
, and
H.
Kaya
,
Methods Enzymol.
380
,
350
(
2004
).
[PubMed]
K.
Yue
and
K. A.
Dill
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
4163
(
1992
).
[PubMed]
7.
S.
Govindarajan
and
R. A.
Goldstein
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
3341
(
1996
);
[PubMed]
R.
Schiemann
,
M.
Bachmann
, and
W.
Janke
,
J. Chem. Phys.
122
,
114705
(
2005
).
[PubMed]
8.
S.
Kamtekar
,
J. M.
Schiffer
,
H.
Xiong
,
J. M.
Babik
, and
M. H.
Hecht
,
Science
249
,
884
(
1990
);
[PubMed]
K. F.
Lau
and
K. A.
Dill
,
Macromolecules
22
,
3986
(
1989
).
9.
J. N.
Onuchic
,
P. G.
Wolynes
,
Z. A.
Luthey-Schultenand
, and
N. D.
Socci
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
3626
(
1995
).
[PubMed]
10.
N.
Madras
and
G.
Slade
,
The Self Avoiding Walk
(
Birkhaeuser
,
Boston/Basel/Berlin
,
1993
);
C.
Vanderzande
,
Lattice Modelels of Polymer
(
Oxford University Press
,
1998
);
P. G.
deGennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
11.
E.
Shakhnovich
and
A.
Gutin
,
J. Chem. Phys.
93
,
5967
(
1990
);
P. D.
Thomas
and
K. A.
Dill
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
11628
(
2006
);
A.
Irbäck
and
C.
Troein
,
J. Biol. Phys.
28
,
1
(
2002
);
[PubMed]
X.
Zhao
,
Applied Soft Computing
8
,
1029
(
2008
).
12.
V. S.
Pande
,
A. Yu.
Grosberg
, and
T.
Tanaka
,
J. Chem. Phys.
103
,
9482
(
1995
).
13.
M.
Peto
,
A.
Kloczkowski
, and
R. L.
Jernigan
,
J. Phys.: Condens. Matter
19
,
285220
(
2007
), and references therein.
14.
A.
Godzik
,
A.
Kolinski
, and
J.
Skolnick
,
J. Comput. Chem.
14
,
1194
(
1993
).
15.
B. P.
Blackburne
and
J. D.
Hurst
,
J. Chem. Phys.
119
,
3453
(
2003
);
on the basis of an exact-enumeration study of 24-step walks on a diamond lattice, these authors have presented a detailed comparative study of the results obtained on diamond as well as square lattice.
16.
γ = 43/32(d = 2); ≈1.1575(d = 3); = 1(d ⩾ 4); μ ≈ 2.6388, 4.684 for a square and cubic lattice respectively; ν = 3/4(d = 2); ≈0.5877(d = 3).
17.
S.
Miyazawa
and
R. L.
Jernigan
,
Macromolecules
18
,
534
(
1985
);
S.
Miyazawa
and
R. L.
Jernigan
,
J. Mol. Biol.
256
,
623
(
1996
).
[PubMed]
18.
H.
Li
,
C.
Tang
, and
N.
Wingreen
,
Phys. Rev. Lett.
79
,
765
(
1997
);
R.
Melin
,
H.
Li
,
N.
Wingreen
, and
C.
Tang
,
J. Chem. Phys.
110
,
1252
(
1999
);
19.
R.
Unger
and
J.
Moult
,
J. Mol. Biol.
231
,
75
(
1993
);
[PubMed]
L.
Toma
and
S.
Toma
,
Protein Sci.
5
,
147
(
1996
);
[PubMed]
F. E.
Lattman
,
K. M.
Fiebig
, and
K. A.
Dill
,
Biochemistry
33
,
6158
(
1994
).
[PubMed]
21.
C.
Levinthal
,
Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois
(
University of Illinois
,
Urbana-Champaign
,
1969
), pp.
22
24
;
R.
Zwanzig
,
A.
Szabo
, and
B.
Bagchi
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
20
(
1992
).
[PubMed]
22.
J. D.
Bryngelson
,
J. N.
Onuchic
,
J. N.
Socci
, and
P. G.
Wolynes
,
Proteins: Struct., Funct., Genet.
21
,
167
(
1995
);
P. E.
Leopold
,
M.
Montal
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
8721
(
1992
).
[PubMed]
23.
R. A.
Goldstein
,
Z. A.
Luthey-Schulten
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
4918
(
1992
);
[PubMed]
J. D.
Bryngelson
and
P. G.
Wolynes
,
P. G. Proc. Natl. Acad. Sci. USA
84
,
7524
(
1987
);
J. D.
Bryngelson
and
P. G.
Wolynes
,
Biopolymers
30
,
171
(
1990
).
24.
Our exact enumeration code not only generates all SAWs up to a specified maximum length but also computes the average radius of gyration and the average end-to-end distance as a function of the length of the walk; it also counts and tabulates, for each length, the number of walks as a function of the number of contacts made. For a given binary sequence and an energy scheme, it can compute the Density of States too. For a maximum of 25 steps, this program takes roughly 8 hours of a desktop PC’s CPU time (Intel Core2 Duo E8400 @ 3 GHz; 4 GB RAM) on Windows XP platform.
25.
The actual number of walks is twelve times ZN(m), because the first two steps have been fixed to be in the directions vI(1) and vII(2), respectively.
26.
The sum is only over the magnitude of E because none of the values of E is a nonzero positive integer.
27.
N. D.
Socci
and
J. N.
Onuchic
,
J. Chem. Phys.
103
,
4732
(
1995
).
28.
C.
Holzgraefe
,
A.
Irbäck
, and
C.
Troin
,
J. Chem. Phys.
135
,
195101
(
2011
).
29.
Configuration codes 1, 2, 3, and 4 correspond to the direction vectors (1,0), (0,1), (−1,0) and (0,−1), respectively.
30.
G.
Chickenji
,
Y.
Fujitsuka
, and
S.
Takada
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
3141
(
2006
).
You do not currently have access to this content.