In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs). Applying the method to simulation data of entangled polymers (by the slip-spring model and the simple reptation model), we provide a clear evidence that the longest relaxation time is estimated as the crossover time in the relative fluctuations.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
1986
).
2.
H.
Watanabe
,
Prog. Polym. Sci.
24
,
1253
(
1999
).
3.
T. C. B.
McLeish
,
Adv. Phys.
51
,
1379
(
2002
).
4.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
5.
M.
Pütz
,
K.
Kremer
, and
G. S.
Grest
,
Europhys. Lett.
49
,
735
(
2000
).
6.
S. K.
Sukumaran
and
A. E.
Likhtman
,
Macromolecules
42
,
4300
(
2009
).
7.
P.
Kindt
and
W. J.
Briels
,
J. Chem. Phys.
127
,
124901
(
2007
).
8.
J. T.
Padding
and
W. J.
Briels
,
J. Phys.: Condens. Matter
23
,
233101
(
2011
).
9.
F.
Bardou
,
J. P.
Bouchaud
,
A.
Aspect
, and
C.
Cohen-Tannoudji
,
Lévy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest
(
Cambridge University Press
,
2002
).
10.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
11.
Y.
He
,
S.
Burov
,
R.
Metzler
, and
E.
Barkai
,
Phys. Rev. Lett.
101
,
058101
(
2008
).
12.
J.-H.
Jeon
and
R.
Metzler
,
J. Phys. A: Math. Theor.
43
,
252001
(
2010
).
13.
T.
Akimoto
,
E.
Yamamoto
,
K.
Yasuoka
,
Y.
Hirano
, and
M.
Yasui
,
Phys. Rev. Lett.
107
,
178103
(
2011
).
14.
T.
Miyaguchi
and
T.
Akimoto
,
Phys. Rev. E
83
,
031926
(
2011
).
15.
T.
Miyaguchi
and
T.
Akimoto
,
Phys. Rev. E
83
,
062101
(
2011
).
16.
T.
Akimoto
and
T.
Miyaguchi
, “
Detecting a cutoff time in trapping-time distribution from relative fluctuation analysis
” (unpublished).
17.
C. C.
Hua
and
J. D.
Schieber
,
J. Chem. Phys.
109
,
10018
(
1998
).
18.
Y.
Masubuchi
,
J.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
115
,
4387
(
2001
).
19.
M.
Doi
and
J.
Takimoto
,
Philos. Trans. R. Soc. London, Ser. A
361
,
641
(
2003
).
20.
D. M.
Nair
and
J. D.
Schieber
,
Macromolecules
39
,
3386
(
2006
).
21.
A. E.
Likhtman
,
Macromolecules
38
,
6128
(
2005
).
22.
T.
Uneyama
,
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
39
,
135
(
2011
).
23.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
1789
(
1978
).
24.
A. E.
Likhtman
and
T. C. B.
McLeish
,
Macromolecules
35
,
6332
(
2002
).
25.
K.
Binder
and
D. W.
Heermann
,
Monte Carlo Simulation in Statistical Physics: An Introduction
, 4th ed. (
Springer
,
Berlin
,
1997
).
26.
A.
Chatterjee
and
D. G.
Vlachos
,
J. Comput.-Aided Mater. Des.
14
,
253
(
2007
).
27.
D. T.
Gillespie
,
J. Comp. Physiol.
22
,
403
(
1976
).
28.
29.
M.
Matsumoto
and
T.
Nishimura
,
ACM Trans. Model. Comput. Simul.
8
,
3
(
1998
);
You do not currently have access to this content.