Decomposition of three imidazole based model energetic systems (2-nitroimidazole, 4-nitroimidazole, and 1-methyl-5-nitroimidazole) is investigated both experimentally and theoretically. The initial decomposition mechanism for these three nitroimidazoles is explored with nanosecond energy resolved spectroscopy, and quantum chemical theory at the complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from these three nitroimidazoles subsequent to UV excitation. A unique, excitation wavelength independent dissociation channel is observed for these three nitroimidazoles that generates the NO product with a rotationally cold (∼50 K) and a vibrationally mildly hot (∼800 K) distribution. Potential energy surface calculations at the CASSCF/6-31G(d) level of theory illustrate that conical intersections play an important and essential role in the decomposition mechanism. Electronically excited S2 nitroimidazole molecules relax to the S1 state through the (S2/S1)CI conical intersection, and undergo a nitro-nitrite isomerization to generate the NO product from the S1 potential energy surface. Nevertheless, NO2 elimination and nitro-nitrite isomerization are expected to be competitive reaction mechanisms for the decomposition of these molecules on the ground state potential energy surface from the Franck-Condon equilibrium geometry through thermal dissociation.

1.
J. R.
Cho
,
K. J.
Kim
,
S. G.
Cho
, and
J. K.
Kim
,
J. Heterocycl. Chem.
39
,
141
(
2002
).
2.
B. M.
Rice
,
S.
Sahu
, and
F. J.
Owens
,
J. Mol. Struct.: THEOCHEM
583
,
69
(
2002
).
3.
K. E.
Gutowski
,
R. D.
Rogers
, and
D. A.
Dixon
,
J. Phys. Chem. A
110
,
11890
(
2006
).
4.
K. E.
Gutowski
,
R. D.
Rogers
, and
D. A.
Dixon
,
J. Phys. Chem. B
111
,
4788
(
2007
).
5.
H. S.
Jadhav
,
M. B.
Talawar
,
R.
Sivabalan
,
D. D.
Dhavale
,
S. N.
Asthana
, and
V. N.
Krishnamurthy
,
J. Hazard. Mater.
143
,
192
(
2007
).
6.
X. F.
Su
,
X. L.
Cheng
,
C. M.
Meng
, and
X. L.
Yuan
,
J. Hazard. Mater.
161
,
551
(
2009
).
7.
X. H.
Li
,
R. Z.
Zhang
, and
X. Z.
Zhang
,
J. Hazard. Mater.
183
,
622
(
2010
).
8.
P.
Ravi
,
G. M.
Gore
,
S. P.
Tewari
, and
A. K.
Sikder
,
J. Mol. Model.
18
,
597
(
2012
).
9.
J. C.
Lee
,
J. T.
Laydon
,
P. C.
McDonnell
,
T. F.
Gallagher
,
S.
Kumar
,
D.
Green
,
D.
McNulty
,
M. J.
Blumenthal
,
J. R.
Heys
,
S. W.
Landvatter
,
J. E.
Strickler
,
M. M.
McLaughlin
,
I. R.
Siemens
,
S. M.
Fisher
,
G. P.
Livi
,
J. R.
White
,
J. L.
Adams
, and
P. R.
Young
,
Nature (London)
372
,
739
(
1994
).
10.
R. W.
Shaw
,
T. B.
Brill
, and
D. L.
Thompson
,
Overviews of Recent research on Energetic Materials
(
World Scientific
,
Hackensack, NJ
,
2005
).
11.
H. M.
Windawi
,
S. P.
Varma
,
C. B.
Cooper
, and
F.
Williams
,
J. Appl. Phys.
47
,
3418
(
1976
).
12.
J.
Schanda
,
B.
Baron
, and
F.
Williams
,
J. Lumin.
9
,
338
(
1974
).
13.
S. P.
Varma
and
F.
Williams
,
J. Chem. Phys.
59
,
912
(
1973
).
14.
F.
Williams
,
Adv. Chem. Phys.
21
,
289
(
1971
).
15.
J.
Sharma
,
J. W.
Forbes
,
C. S.
Coffey
, and
T. P.
Liddiard
,
J. Phys. Chem.
91
,
5139
(
1987
).
16.
J.
Sharma
,
B. C.
Beard
, and
M.
Chaykovsky
,
J. Phys. Chem.
95
,
1209
(
1991
).
17.
Z. A.
Dreger
,
Y. A.
Gruzdkov
,
Y. M.
Gupta
, and
J. J.
Dick
,
J. Phys. Chem. B
106
,
247
(
2001
).
18.
Y.
Tsuboi
,
T.
Seto
, and
N.
Kitamura
,
J. Phys. Chem. B
107
,
7547
(
2003
).
19.
B. P.
Aduev
,
E. D.
Aluker
,
M. M.
Kuklja
,
A. B.
Kunz
, and
E. H.
Younk
,
J. Lumin.
91
,
41
(
2000
).
20.
M. M.
Kuklja
,
S. N.
Rashkeev
, and
F. J.
Zerilli
,
AIP Conf. Proc.
706
,
363
(
2004
).
21.
E. J.
Reed
,
J. D.
Joannopoulos
, and
L. E.
Fried
,
Phys. Rev. B
62
,
16500
(
2000
).
22.
M.
Manaa
,
L.
Fried
, and
E.
Reed
,
J. Comput.-Aided Mater. Des
10
,
75
(
2003
).
23.
M. R.
Manaa
and
L. E.
Fried
,
J. Phys. Chem. A
103
,
9349
(
1999
).
24.
M. M.
Kuklja
,
E. V.
Stefanovich
, and
A. B.
Kunz
,
J. Chem. Phys.
112
,
3417
(
2000
).
25.
M. M.
Kuklja
,
B. P.
Aduev
,
E. D.
Aluker
,
V. I.
Krasheninin
,
A. G.
Krechetov
, and
A. Y.
Mitrofanov
,
J. Appl. Phys.
89
,
4156
(
2001
).
26.
M. M.
Kuklja
and
A. B.
Kunz
,
J. Phys. Chem. Solids
61
,
35
(
2000
).
27.
C. M.
Tarver
,
AIP Conf. Proc.
1426
,
227
(
2012
).
28.
A. B.
Kunz
and
D. R.
Beck
,
Phys. Rev. B
36
,
7580
(
1987
).
29.
D. G.
Tasker
,
R. D.
Dick
, and
W. H.
Wilson
,
AIP Conf. Proc.
429
,
591
(
1998
).
30.
A.
Bhattacharya
,
Y.
Guo
, and
E. R.
Bernstein
,
Acc. Chem. Res.
43
,
1476
(
2010
).
31.
J.
Sharma
and
B. C.
Beard
,
Mater. Res. Soc. Symp. Proc.
296
,
189
(
1993
).
32.
J. J.
Gilman
,
Mat. Res. Soc. Symp. Proc.
453
,
227
(
1997
).
33.
B. P.
Aduev
,
E. D.
Aluker
,
G. M.
Belokurov
,
Y. A.
Zakharov
, and
A. G.
Krechetov
,
J. Exp. Theor. Phys.
89
,
906
(
1999
).
34.
A. B.
Kunz
,
M. M.
Kuklja
,
T. R.
Botcher
, and
T. P.
Russell
,
Thermochim. Acta
384
,
279
(
2002
).
35.
R. B.
Hall
and
F.
Williams
,
J. Chem. Phys.
58
,
1036
(
1973
).
36.
Even though the term “energetic molecule” is not a completely accurate descriptor, it is a jargon in this field. Thus we will still use this phrase in this report. In this sense, an “energetic molecule” is one that, in a pure crystalline form, will be able to detonate or release its stored chemical energy successfully in a short period of time.
37.
H. S.
Im
and
E. R.
Bernstein
,
J. Chem. Phys.
113
,
7911
(
2000
).
38.
Y. Q.
Guo
,
M.
Greenfield
, and
E. R.
Bernstein
,
J. Chem. Phys.
122
,
244310
(
2005
).
39.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.1; Gaussian, Inc., Wallingford, CT,
2009
.
40.
I. J.
Palmer
,
I. N.
Ragazos
,
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
J. Am. Chem. Soc.
115
,
673
(
1993
).
41.
D.
Asturiol
,
B.
Lasorne
,
G. A.
Worth
,
M. A.
Robb
, and
L.
Blancafort
,
Phys. Chem. Chem. Phys.
12
,
4949
(
2010
).
42.
D.
Peláez
,
J. F.
Arenas
,
J. C.
Otero
, and
J.
Soto
,
J. Org. Chem.
72
,
4741
(
2007
).
43.
J.
Soto
,
J. F.
Arenas
,
J. C.
Otero
, and
D.
Peláez
,
J. Phys. Chem. A
110
,
8221
(
2006
).
44.
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
45.
H. P.
Hratchian
and
H. B.
Schlegel
,
J. Chem. Theory Comput.
1
,
61
(
2004
).
46.
C. J. S. M.
Simpson
,
P. T.
Griffiths
,
H. L.
Wallaart
, and
M.
Towrie
,
Chem. Phys. Lett.
263
,
19
(
1996
).
47.
G.
Herzberg
,
Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules
(
Van Nostrand
,
New York
,
1950
).
48.
A.
Bhattacharya
,
Y. Q.
Guo
, and
E. R.
Bernstein
,
J. Phys. Chem. A
113
,
811
(
2009
).
49.
Y. Q.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Phys. Chem. A
113
,
85
(
2008
).
50.
Z. J.
Yu
and
E. R.
Bernstein
,
J. Chem. Phys.
135
,
154305
(
2011
).
51.
A.
Bhattacharya
,
Y.
Guo
, and
E. R.
Bernstein
,
J. Chem. Phys.
136
,
024321
(
2012
).
52.
Y. Q.
Guo
,
M.
Greenfield
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Chem. Phys.
127
,
154301
(
2007
).
53.
L. J.
Butler
,
D.
Krajnovich
,
Y. T.
Lee
,
G. S.
Ondrey
, and
R.
Bersohn
,
J. Chem. Phys.
79
(
4
),
1708
(
1983
).
54.
J. M.
Flournoy
,
J. Chem. Phys.
36
,
1106
(
1962
).
55.
A.
Bhattacharya
and
E. R.
Bernstein
,
J. Phys. Chem. A
115
,
4135
(
2011
).
56.
S. A.
Lloyd
,
M. E.
Umstead
, and
M. C.
Lin
,
J. Energ. Mater.
3
,
187
(
1985
).
57.
G. F.
Velardez
,
S.
Alavi
, and
D. L.
Thompson
,
J. Chem. Phys.
123
,
074313
(
2005
).
58.
C.
Capellos
,
S.
Lee
,
S.
Bulusu
, and
L.
Gams
,
Advances in Chemical Reaction Dynamics
(
D. Reidel
,
Dordrecht
,
1986
).
59.
A. C.
Landerville
,
I. I.
Oleynik
, and
C. T.
White
,
J. Phys. Chem. A
113
,
12094
(
2009
).
60.
Y. Q.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Chem. Phys.
128
,
034303
(
2008
).
61.
Y.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Chem. Phys.
134
,
024318
(
2011
).
62.
See supplementary material at http://dx.doi.org/10.1063/1.4752654 for details of calculations and methods.

Supplementary Material

You do not currently have access to this content.