Absorption UV spectra of gold clusters Aun (n = 4, 6, 8, 12, 20) are investigated using the time-dependent density functional theory (TDDFT). The calculations employ several long-range corrected xc functionals: ωB97X, LC-ωPBEh, CAM-B3LYP* (where * denotes a variant with corrected asymptote of CAM-B3LYP), and LC-ωPBE. The latter two are subject to first-principle tuning according to a prescription of Stein et al [Phys. Rev. Lett.105, 266802 (2010) https://doi.org/10.1103/PhysRevLett.105.266802] by varying the range separation parameter. TDDFT results are validated for Au4 and Au8 against the equation-of-motion coupled cluster singles and doubles results and the experiment. Both long-range correction and the inclusion of a fixed portion of the exact exchange in the short-range are essential for the proper description of the optical spectra of gold. The ωB97X functional performs well across all studied cluster sizes. LC-ωPBEh, with parameters recommended by Rohrdanz et al [J. Chem. Phys.130, 054112 (2009) https://doi.org/10.1063/1.3073302], affords the best performance for clusters of n > 4. The optimally tuned CAM-B3LYP* features the range separation parameter of 0.33 for Au4 and 0.25 for all the larger clusters. For LC-ωPBE the tuning procedure resulted in incorrect transition energies and oscillator strengths despite the fact that the optimized functional showed the accurate linear dependence on fractional electron numbers. Aun (n = 4, 6, 8) feature optical gaps above of 3 eV and Au20 of ∼2.9 eV. In Au12 this gap narrows to ∼2.1 eV. The calculated spectrum for Au20 involves intensity being concentrated in only a few transitions with the absorption maximum at 3.5 eV. The intense 3.5 eV absorption is present in all cluster sizes of n > 4. The calculated HOMO-LUMO gaps for all cluster sizes are within 0.5 eV of the difference between the vertical ionization potential and electron affinity. The reasons for this and for the failure of conventional xc functionals for optical spectra of gold are discussed.

1.
K. J.
Taylor
,
C. L.
Pettiette-Hall
,
O.
Cheshnovsky
, and
R. E.
Smalley
,
J. Chem. Phys.
96
,
3319
(
1992
).
2.
W. A.
de Heer
,
Rev. Mod. Phys.
65
,
611
(
1993
).
3.
H.
Häkkinen
,
B.
Yoon
,
U.
Landman
,
X.
Li
,
H. J.
Zhai
, and
L. S.
Wang
,
J. Phys. Chem. A
107
,
6168
(
2003
).
4.
H.
Häkkinen
,
Chem. Soc. Rev.
37
,
1847
(
2008
).
5.
P.
Pyykkö
,
Chem. Soc. Rev.
37
,
1967
(
2008
);
[PubMed]
P.
Pyykko
,
Angew. Chem., Int. Ed.
43
,
4412
(
2004
).
6.
J.
Lermé
,
B.
Palpant
,
B.
Prevel
,
E.
Cottancin
,
M.
Pellarin
,
M.
Treilleux
,
J. L.
Vialle
,
A.
Perez
, and
M.
Broyer
,
Eur. Phys. J. D
4
,
95
(
1998
).
7.
R.
Sardar
,
A. M.
Funston
,
P.
Mulvaney
, and
R. W.
Murray
,
Langmuir
25
,
13840
(
2009
).
8.
S. M.
Morton
,
D. W.
Silverstein
, and
L.
Jensen
,
Chem. Rev.
111
,
3962
(
2011
).
9.
E.
Cottancin
,
G.
Celep
,
J.
Lermé
,
M.
Pellarin
,
J. R.
Huntzinger
,
J. L.
Vialle
, and
M.
Broyer
,
Theor. Chem. Acc.
116
,
514
(
2006
).
10.
N.
Durante
,
A.
Fortunelli
,
M.
Broyer
, and
M.
Stener
,
J. Phys. Chem. C
115
,
6277
(
2011
).
11.
L. D.
Menard
,
S. P.
Gao
,
H. P.
Xu
,
R. D.
Twesten
,
A. S.
Harper
,
Y.
Song
,
G. L.
Wang
,
A. D.
Douglas
,
J. C.
Yang
,
A. I.
Frenkel
,
R. G.
Nuzzo
, and
R. W.
Murray
,
J. Phys. Chem. B
110
,
12874
(
2006
).
12.
M.
Zhu
,
C. M.
Aikens
,
F. J.
Hollander
,
G. C.
Schatz
, and
R.
Jin
,
J. Am. Chem. Soc.
130
,
5883
(
2008
).
13.
M. M.
Alvarez
,
J. T.
Khoury
,
T. G.
Schaaff
,
M. N.
Shafigullin
,
I.
Vezmar
, and
R. L.
Whetten
,
J. Phys. Chem. B
101
,
3706
(
1997
).
14.
B. A.
Collings
,
K.
Athanassenas
,
D.
Lacombe
,
D. M.
Rayner
, and
P. A.
Hackett
,
J. Chem. Phys.
101
,
3506
(
1994
).
15.
S.
Gilb
,
K.
Jacobsen
,
D.
Schooss
,
F.
Furche
,
R.
Ahlrichs
, and
M. M.
Kappes
,
J. Chem. Phys.
121
,
4619
(
2004
).
16.
S.
Lecoultre
,
A.
Rydlo
,
C.
Felix
,
J.
Buttet
,
S.
Gilb
, and
W. J.
Harbich
,
J. Chem. Phys.
134
,
074302
(
2011
).
17.
J.
Zheng
,
C.
Zhang
, and
R. M.
Dickson
,
Phys. Rev. Lett.
93
,
077402
(
2004
).
18.
M. L.
Tran
,
A. V.
Zvyagin
, and
T.
Plakhotnik
,
Chem. Commun.
2006
,
2400
.
19.
S.
Rath
,
S.
Nozaki
,
D.
Palagin
,
V.
Matulis
,
O.
Ivashkevich
, and
S.
Maki
,
Appl. Phys. Lett.
97
,
053103
(
2010
).
20.
S.
Faas
,
J. G.
Snijders
,
J. H.
van Lenthe
,
E.
van Lenthe
, and
E. J.
Baerends
,
Chem. Phys. Lett.
246
,
632
(
1995
).
21.
F.
Wang
,
T.
Ziegler
,
E.
van Lenthe
,
S.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
122
,
204103
(
2005
).
22.
J. C.
Idrobo
,
W.
Walkosz
,
S. F.
Yip
,
S.
Ogut
,
J.
Wang
, and
J.
Jellinek
,
J. Phys. Rev. B
76
,
205422
(
2007
).
23.
A.
Castro
,
M. A. L.
Marques
,
A. H.
Romero
,
M. J. T.
Oliveira
, and
A.
Rubio
,
J. Chem. Phys.
129
,
144110
(
2008
).
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
25.
J.
Li
,
X.
Li
,
H. J.
Zhai
, and
L. S.
Wang
,
Science
299
,
864
(
2003
).
26.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Sing
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
27.
C. M.
Aikens
and
G. C.
Schatz
,
J. Phys. Chem. A
110
,
13317
(
2006
).
28.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
29.
K.
Wu
,
J.
Li
, and
C.
Lin
,
Chem. Phys. Lett.
388
,
353
(
2004
).
30.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
31.
R. H.
Xie
,
G. W.
Bryant
,
J.
Zhao
,
T.
Kar
, and
V. H.
Smith
 Jr.
,
Phys. Rev. B
71
,
125422
(
2006
).
32.
M. E.
Casida
,
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
33.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
34.
P.
Elliott
,
F.
Furche
, and
K.
Burke
, in
Excited States from Time-Dependent Density Functional Theory
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
Wiley
,
Hoboken, NJ
,
2009
), Vol. 26, pp.
91
165
.
35.
M. E.
Casida
and
D. R.
Salahub
,
J. Chem. Phys.
113
,
8918
(
2000
).
36.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
37.
A. W.
Lange
,
M. A.
Rohrdanz
, and
J. M.
Herbert
,
J. Phys. Chem. B
112
,
6304
(
2008
).
38.
M.
Parac
and
S.
Grimme
,
Chem. Phys.
292
,
11
(
2003
).
39.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Theory Comput.
7
,
1296
(
2011
).
40.
N.
Kuritz
,
T.
Stein
,
R.
Baer
, and
L.
Kronik
,
J. Chem. Theory Comput.
7
,
2408
(
2011
).
41.
D. M.
Silverstein
and
L.
Jensen
,
J. Chem. Phys.
132
,
194302
(
2010
).
42.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
43.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpete
, and
C.
Adamo
,
J. Chem. Theory Comput.
5
,
2420
(
2009
).
44.
D.
Jacquemin
,
E. A.
Perpete
,
G. E.
Scuseria
,
I.
Ciofini
, and
C.
Adamo
,
J. Chem. Theory Comput.
4
,
123
(
2008
).
45.
R.
Kobayashi
and
R. D.
Amos
,
Chem. Phys. Lett.
420
,
106
(
2006
).
46.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
47.
Z. L.
Cai
,
M. J.
Crossley
,
J. R.
Reimers
,
R.
Kobayashi
, and
R. D.
Amos
,
J. Phys. Chem. B
110
,
15624
(
2006
).
48.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
,
J. Chem. Phys.
130
,
054112
(
2009
).
49.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
,
98
,
7029
(
1993
);
T.
Korona
and
H. J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
50.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
51.
K. A.
Peterson
and
C.
Puzzarini
,
Theor. Chem. Acc.
114
,
283
(
2005
).
52.
R. M.
Olson
and
M. S.
Gordon
,
J. Chem. Phys.
126
,
214310
(
2007
).
53.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
54.
M. J.
Frisch
,
G. W.
Trucks
, and
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2010
.
55.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
56.
J. D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
57.
The dispersion-corrected variant of this functional, ωB97XD, (Ref. 58) is currently not parametrized for gold. Nonetheless, our results show that the ωB97X functional reproduces very well the well depth of aurophilic interactions (Ref. 59).
58.
J. D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
59.
R.-F.
Liu
,
C. A.
Franzese
,
R.
Malek
,
P. S.
Zuchowski
,
J. G.
Angyan
,
M. M.
Szczesniak
, and
G.
Chalasinski
,
J. Chem. Theory Comput.
7
,
2399
(
2011
).
60.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Chem. Phys.
128
,
194105
(
2008
).
61.
M.
Ernzerhof
and
J. P.
Perdew
,
J. Chem. Phys.
109
,
3313
(
1998
).
62.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
63.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
64.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
,
Phys. Rev. Lett.
105
,
266802
(
2010
).
65.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
66.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
67.
M.
Srebro
and
J.
Autschbach
,
J. Chem. Theory Comput.
8
,
245
(
2012
).
68.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
69.
H. J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
70.
See supplementary material at http://dx.doi.org/10.1063/1.4752433 for additional results for the clusters Au6, Au8, and Au20.
71.
J. W.
Song
,
T.
Hirosawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
154105
(
2007
).
72.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
);
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
73.
W.
Yang
,
A. J.
Cohen
, and
P.
Mori-Sánchez
,
J. Chem. Phys.
136
,
204111
(
2012
).
74.
C.
Jackschath
,
I.
Rabin
, and
W.
Schulze
,
Ber. Bunsenges. Phys. Chem.
96
,
1200
(
1992
).
75.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
76.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
,
J. Chem. Phys.
126
,
154109
(
2007
).
77.
T.
Tsuneda
,
J. W.
Song
,
S.
Suzuki
, and
K.
Hirao
,
J. Chem. Phys.
133
,
174101
(
2010
).
78.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
79.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
80.
M. A.
Rohrdanz
and
J. M.
Herbert
,
J. Chem. Phys.
129
,
034107
(
2008
).
81.
C. L.
Janssen
and
I. M. B.
Nielsen
,
Chem. Phys. Lett.
290
,
423
(
1998
);
T. J.
Lee
,
Chem. Phys. Lett.
372
,
362
(
2003
).
82.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
Ni.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
, preprint arXiv:1203.2357v3 (
2012
).
83.
A. D.
Becke
and
M. R.
Roussel
,
Phys. Rev. A
39
,
3761
(
1989
).
84.
A.
Devarajan
,
A.
Gaenko
, and
J.
Autschbach
,
J. Chem. Phys.
130
,
194102
(
2009
).
85.
We extended this comparison to the negative ion, Au12, whose two isomers D3h and C2v were benchmarked with TPSS in
M. P.
Johansson
,
A.
Lechtken
,
D.
Schooss
,
M. M.
Kappes
, and
F.
Furche
,
Phys. Rev. A
77
,
053202
(
2008
). ωB97X optimization confirmed the energy difference between them (our value −0.316 eV vs. their value −0.34 eV).
86.
E. S.
Kryachko
and
F.
Remacle
,
Int. J. Quantum Chem.
107
,
2922
(
2007
).
87.
M. P.
Johansson
,
D.
Sundholm
, and
J.
Vaara
,
Angew. Chem., Int. Ed.
43
,
2678
(
2004
).
88.
M.
Srebro
and
J.
Autschbach
,
J. Phys. Chem. Lett.
3
,
576
(
2012
).
89.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
5
(
2010
).

Supplementary Material

You do not currently have access to this content.