Accurate computation of singlet-triplet energy gaps of diradicals remains a challenging problem in density-functional theory (DFT). In this work, we propose a variational extension of our previous work [D. H. Ess, E. R. Johnson, X. Q. Hu, and W. T. Yang, J. Phys. Chem. A115, 76 (2011) https://doi.org/10.1021/jp109280y], which applied fractional-spin density-functional theory (FS-DFT) to diradicals. The original FS-DFT approach assumed equal spin-orbital occupancies of 0.5 α-spin and 0.5 β-spin for the two degenerate, or nearly degenerate, frontier orbitals. In contrast, the variational approach (VFS-DFT) optimizes the total energy of a singlet diradical with respect to the frontier-orbital occupation numbers, based on a full configuration-interaction picture. It is found that the optimal occupation numbers are exactly 0.5 α-spin and 0.5 β-spin for diradicals such as O2, where the frontier orbitals belong to the same multidimensional irreducible representation, and VFS-DFT reduces to FS-DFT for these cases. However, for diradicals where the frontier orbitals do not belong to the same irreducible representation, the optimal occupation numbers can vary between 0 and 1. Furthermore, analysis of CH2 by VFS-DFT and FS-DFT captures the 1A1 and 1B1 states, respectively. Finally, because of the static correlation error in commonly used density functional approximations, both VFS-DFT and FS-DFT calculations significantly overestimate the singlet-triplet energy gaps for disjoint diradicals, such as cyclobutadiene, in which the frontier orbitals are confined to separate atomic centers.

1.
L.
Salem
and
C.
Rowland
,
Angew. Chem. Int. Ed.
11
,
92
(
1972
).
2.
K. C.
Nicolaou
,
W. M.
Dai
,
S. C.
Tsay
,
V. A.
Estevez
, and
W.
Wrasidlo
,
Science
256
,
1172
(
1992
).
3.
S.
Pedersen
,
J. L.
Herek
, and
A. H.
Zewail
,
Science
266
,
1359
(
1994
).
4.
C. J.
Cramer
,
J. Am. Chem. Soc.
120
,
6261
(
1998
).
5.
Z.-X.
Yu
,
P.
Caramella
, and
K. N.
Houk
,
J. Am. Chem. Soc.
125
,
15420
(
2003
).
7.
K.
Matsuda
,
M.
Matsuo
, and
M.
Irie
,
J. Org. Chem.
66
,
8799
(
2001
).
8.
D.
Scheschkewitz
,
H.
Amii
,
H.
Gornitzka
,
W. W.
Schoeller
,
D.
Bourissou
, and
G.
Bertrand
,
Science
295
,
1880
(
2002
).
9.
A.
Rajca
,
K.
Shiraishi
, and
S.
Rajca
,
Chem. Commun.
2009
,
4372
.
10.
K. A.
Williams
,
M. J.
Nowak
,
E.
Dormann
, and
F.
Wudl
,
Synth. Met.
14
,
233
(
1986
).
11.
I.
Kaur
,
M.
Jazdzyk
,
N. N.
Stein
,
P.
Prusevich
, and
G. P.
Miller
,
J. Am. Chem. Soc.
132
,
1261
(
2010
).
12.
W. T.
Borden
and
E. R.
Davidson
,
Annu. Rev. Phys. Chem.
30
,
125
(
1979
).
13.
R. R.
Squires
and
C. J.
Cramer
,
J. Phys. Chem. A
102
,
9072
(
1998
).
14.
S. N.
Datta
,
P. P.
Jha
, and
M. E.
Ali
,
J. Phys. Chem. A
108
,
4087
(
2004
).
15.
E. R.
Davidson
and
A. E.
Clark
,
Int. J. Quantum Chem.
103
,
1
(
2005
).
16.
P.
Pulay
and
R. F.
Liu
,
J. Phys. Chem.
94
,
5548
(
1990
).
17.
W. T. G.
Johnson
,
D. A.
Hrovat
,
A.
Skancke
, and
W. T.
Borden
,
Theor. Chem. Acc.
102
,
207
(
1999
).
18.
D. H.
Ess
,
A. E.
Hayden
,
F.-G.
Klärner
, and
K. N.
Houk
,
J. Org. Chem.
73
,
7586
(
2008
).
19.
J.
Pittner
,
P.
Nachtigall
,
P.
Carsky
, and
I.
Hubac
,
J. Phys. Chem. A
105
,
1354
(
2001
).
20.
X. Z.
Li
and
J.
Paldus
,
J. Chem. Phys.
129
,
054104
(
2008
).
21.
S.
Yamanaka
,
T.
Kawakami
,
H.
Nagao
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
231
,
25
(
1994
).
22.
B. R.
Beno
,
J.
Fennen
,
K. N.
Houk
,
H. J.
Lindner
, and
K.
Hafner
,
J. Am. Chem. Soc.
120
,
10490
(
1998
).
23.
A. D.
Becke
,
A.
Savin
, and
H.
Stoll
,
Theor. Chem. Acc.
91
,
147
(
1995
).
24.
J.
Wang
,
A. D.
Becke
, and
J. Vedene H.
Smith
,
J. Chem. Phys.
102
,
3477
(
1995
).
25.
26.
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
126
,
214104
(
2007
).
27.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
,
Theor. Chem. Acc.
43
,
261
(
1977
).
28.
K.
Yamaguchi
,
Y.
Yoshioka
, and
T.
Fueno
,
Chem. Phys. Lett.
46
,
360
(
1977
).
29.
I.
Mayer
, “
The spin-projected extended hartree-fock method
,” in
Advances in Quantum Chemistry
, edited by
P.-O.
Löwdin
(
Academic
,
1980
), Vol.
12
, p.
189
.
30.
T.
Saito
,
Y.
Kataoka
,
Y.
Nakanishi
,
T.
Matsui
,
Y.
Kitagawa
,
T.
Kawakami
,
M.
Okumura
, and
K.
Yamaguchi
,
Chem. Phys.
368
,
1
(
2010
).
31.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
32.
A. I.
Krylov
,
Chem. Phys. Lett.
350
,
522
(
2001
).
33.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
34.
J. S.
Sears
,
C. D.
Sherrill
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
9084
(
2003
).
35.
Y. H.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
4807
(
2003
).
36.
Z. D.
Li
and
W. J.
Liu
,
J. Chem. Phys.
133
,
064106
(
2010
).
37.
D. H.
Ess
,
E. R.
Johnson
,
X. Q.
Hu
, and
W. T.
Yang
,
J. Phys. Chem. A
115
,
76
(
2011
).
38.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
39.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
40.
Y. K.
Zhang
and
W. T.
Yang
,
Theor. Chem. Acc.
103
,
346
(
2000
).
41.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W. T.
Yang
,
Phys. Rev. B
77
,
115123
(
2008
).
42.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W. T.
Yang
,
J. Chem. Phys.
129
,
121104
(
2008
).
43.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
102
,
066403
(
2009
).
44.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
45.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
46.
W.
Yang
,
Y.
Zhang
, and
P. W.
Ayers
,
Phys. Rev. Lett.
84
,
5172
(
2000
).
47.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W. T.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
48.
X.
Zheng
,
A. J.
Cohen
,
P.
Mori-Sánchez
,
X. Q.
Hu
, and
W. T.
Yang
,
Phys. Rev. Lett.
107
,
026403
(
2011
).
49.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
50.
E. R.
Johnson
and
J.
Contreras-Garcia
,
J. Chem. Phys.
135
,
081103
(
2011
).
51.
X. C.
Zeng
,
H.
Hu
,
X. Q.
Hu
,
A. J.
Cohen
, and
W. T.
Yang
,
J. Chem. Phys.
128
,
124510
(
2008
).
52.
X. C.
Zeng
,
H.
Hu
,
X. Q.
Hu
, and
W. T.
Yang
,
J. Chem. Phys.
130
,
164111
(
2009
).
53.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover
,
Mineola
,
1989
).
54.
P. W.
Ayers
and
W.
Yang
,
J. Chem. Phys.
124
,
224108
(
2006
).
55.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
288
,
689
(
1998
).
56.
M.
Filatov
and
S.
Shaik
,
J. Chem. Phys.
110
,
116
(
1999
).
57.
M.
Filatov
and
S.
Shaik
,
J. Phys. Chem. A
104
,
6628
(
2000
).
58.
S. G.
Wang
and
W. H. E.
Schwarz
,
J. Chem. Phys.
105
,
4641
(
1996
).
59.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W. T.
Yang
,
Science
321
,
792
(
2008
).
60.
R. A.
Donnelly
and
R. G.
Parr
,
J. Chem. Phys.
69
,
4431
(
1978
).
61.
E.
Baerends
,
J.
Autschbach
,
A.
Bérces
,
F.
Bickelhaupt
,
C.
Bo
,
P.
Boerrigter
,
L.
Cavallo
,
D.
Chong
,
L.
Deng
,
R.
Dickson
,
D.
Ellis
,
M. v.
Faassen
,
L.
Fan
,
T.
Fischer
,
C. F.
Guerra
,
S. v.
Gisbergen
,
J.
Groeneveld
,
O.
Gritsenko
,
M.
Grüning
,
F.
Harris
,
P. v. d.
Hoek
,
C.
Jacob
,
H.
Jacobsen
,
L.
Jensen
,
G. v.
Kessel
,
F.
Kootstra
,
E. v.
Lenthe
,
D.
McCormack
,
A.
Michalak
,
J.
Neugebauer
,
V.
Nicu
,
V.
Osinga
,
S.
Patchkovskii
,
P.
Philipsen
,
D.
Post
,
C.
Pye
,
W.
Ravenek
,
P.
Ros
,
P.
Schipper
,
G.
Schreckenbach
,
J.
Snijders
,
M.
Solà
,
M.
Swart
,
D.
Swerhone
,
G. te
Velde
,
P.
Vernooijs
,
L.
Versluis
,
L.
Visscher
,
O.
Visser
,
F.
Wang
,
T.
Wesolowski
,
E. van
Wezenbeek
,
G.
Wiesenekker
,
S.
Wolff
,
T.
Woo
,
A.
Yakovlev
, and
T.
Ziegler
, ADF2010.02, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,
2007
, see http://www.scm.com.
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
63.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
64.
An in-house program for QM/MM simulations, see http://www.qm4d.info.
65.
T.
Saito
,
S.
Nishihara
,
S.
Yamanaka
,
Y.
Kitagawa
,
T.
Kawakami
,
S.
Yamada
,
H.
Isobe
,
M.
Okumura
, and
K.
Yamaguchi
,
Theor. Chem. Acc.
130
,
749
(
2011
).
66.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al., GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
67.
See supplementary material at http://dx.doi.org/10.1063/1.4749242 for the detailed coordinates for each molecule.
68.
W. T.
Borden
and
E. R.
Davidson
,
J. Am. Chem. Soc.
99
,
4587
(
1977
).
69.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
71.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
72.
E. R.
Davidson
, “
Singlet-triplet energy separation in carbenes and related diradicals
,” in
Diradicals
, edited by
W. T.
Borden
(
Wiley
,
Weinheim, Germany
,
1982
), p.
73
.
73.
G.
Osmann
,
P. R.
Bunker
,
P.
Jensen
, and
W. P.
Kraemer
,
J. Mol. Spectrosc.
186
,
319
(
1997
).
74.
J. P.
Gu
,
G.
Hirsch
,
R. J.
Buenker
,
M.
Brumm
,
G.
Osmann
,
P. R.
Bunker
, and
P.
Jensen
,
J. Mol. Struct.
517
,
247
(
2000
).
75.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research
,
2006
), p.
748
.
76.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
77.
J.
Berkowitz
,
J. P.
Greene
,
H.
Cho
, and
B.
Ruscic
,
J. Chem. Phys.
86
,
1235
(
1987
).
78.
R.
Escribano
and
A.
Campargue
,
J. Chem. Phys.
108
,
6249
(
1998
).
79.
J.
Berkowitz
and
H.
Cho
,
J. Chem. Phys.
90
,
1
(
1989
).
80.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
81.
Y.
Mo
,
L.
Song
, and
Y.
Lin
,
J. Phys. Chem. A
111
,
8291
(
2007
).
82.
Y.
Geerts
,
G.
Klärner
, and
K.
Müllen
,
Electronic Materials: The Oligomer Approach
(
Wiley
,
Weinheim, Germany
,
1998
).
83.
M.
Bendikov
,
H. M.
Duong
,
K.
Starkey
,
K. N.
Houk
,
E. A.
Carter
, and
F.
Wudl
,
J. Am. Chem. Soc.
126
,
7416
(
2004
).

Supplementary Material

You do not currently have access to this content.