In this paper, we study the liquid-solid coexistence of NaCl-type alkali halides, described by interaction potentials such as Tosi-Fumi (TF), Smith-Dang (SD), and Joung-Cheatham (JC), and compute their melting temperature (Tm) at 1 bar via three independent routes: (1) liquid/solid direct coexistence, (2) free-energy calculations, and (3) Hamiltonian Gibbs-Duhem integration. The melting points obtained by the three routes are consistent with each other. The calculated Tm of the Tosi-Fumi model of NaCl is in good agreement with the experimental value as well as with other numerical calculations. However, the other two models considered for NaCl, SD and JC, overestimate the melting temperature of NaCl by more than 200 K. We have also computed the melting temperature of other alkali halides using the Tosi-Fumi interaction potential and observed that the predictions are not always as close to the experimental values as they are for NaCl. It seems that there is still room for improvement in the area of force-fields for alkaline halides, given that so far most models are still unable to describe a simple yet important property such as the melting point.

1.
B.
Groth
,
R.
Evans
, and
S.
Dietrich
,
Phys. Rev. E
57
,
6944
(
1998
).
2.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
110
,
1581
(
1999
).
3.
A.
Ciach
and
G.
Stell
,
Phys. Rev. E
70
,
016114
(
2004
).
4.
A. P.
Hynninen
,
M. E.
Leunissen
,
A.
van Blaaderen
, and
M.
Dijkstra
,
Phys. Rev. Lett.
96
,
018303
(
2006
).
5.
M.
Gonzalez-Melchor
,
J.
Alejandre
, and
F.
Bresme
,
Phys. Rev. Lett.
90
,
135506
(
2003
).
6.
C.
Vega
,
F.
Bresme
, and
J. L. F.
Abascal
,
Phys. Rev. E
54
,
2746
(
1996
).
7.
C.
Vega
,
J. L. F.
Abascal
,
C.
McBride
, and
F.
Bresme
,
J. Chem. Phys.
119
,
964
(
2003
).
8.
M.
Born
,
Verhandl. Deut. Physik. Ges.
21
,
13
(
1919
).
9.
L.
Pauling
,
Z. Kristallogr.
67
,
377
(
1928
).
10.
L.
Pauling
,
J. Am. Chem. Soc.
50
,
1036
(
1928
).
11.
J. E.
Mayer
,
J. Chem. Phys.
1
,
270
(
1933
).
12.
M. L.
Huggins
and
J. E.
Mayer
,
J. Chem. Phys.
1
,
643
(
1933
).
13.
F.
Fumi
and
M.
Tosi
,
J. Phys. Chem. Solids
25
,
31
(
1964
).
14.
J.
Lewis
,
K.
Singer
, and
L.
Woodcock
,
J. Chem. Soc., Faraday Trans.
71
,
301
(
1975
).
15.
M.
Wilson
and
P.
Madden
,
J. Phys. Condens. Matter
5
,
2687
(
1992
).
16.
D. J.
Adams
and
I. R.
McDonald
,
J. Phys. C
7
,
2761
(
1974
).
17.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
,
J. Chem. Phys.
122
,
194501
(
2005
).
18.
K.
Chen
,
X.
Zhu
, and
J.
Wang
,
Chin. J. Inorg. Chem.
20
,
1050
(
2004
).
19.
X.
Zhu
,
J. Mol. Struct.: THEOCHEM
680
,
137
(
2004
).
20.
T.
Zykova-Timan
,
U.
Tartaglino
,
D.
Ceresoli
,
W.
Sekkal-Zaoui
, and
E.
Tosatti
,
Surf. Sci.
566–568
,
794
(
2004
).
21.
T.
Zykova-Timan
,
C.
Valeriani
,
E.
Sanz
,
D.
Frenkel
, and
E.
Tosatti
,
Phys. Rev. Lett.
100
,
036103
(
2008
).
22.
J.
Anwar
,
D.
Frenkel
, and
M. G.
Noro
,
J. Chem. Phys.
118
,
728
(
2003
).
23.
D. M.
Eike
,
J. F.
Brennecke
, and
E. J.
Maginn
,
J. Chem. Phys.
122
,
014115
(
2005
).
24.
E.
Mastny
and
J.
de Pablo
,
J. Chem. Phys.
122
,
124109
(
2005
).
25.
T.
Zykova-Timan
,
D.
Ceresoli
,
U.
Tartaglino
, and
E.
Tosatti
,
J. Chem. Phys.
125
,
164701
(
2005
).
26.
R.
Boehler
,
M.
Ross
, and
D.
Boercker
,
Phys. Rev. Lett.
78
,
4589
(
1997
).
27.
R.
Boehler
,
M.
Ross
, and
D.
Boercker
,
Phys. Rev. B
53
,
556
(
1996
).
28.
A.
Belonoshko
,
R.
Ahuja
, and
B.
Johansson
,
Phys. Rev. B
61
,
11928
(
2000
).
29.
A.
Belonoshko
and
L.
Dubrovinsky
,
Am. Mineral.
81
,
303
(
1996
).
30.
D. E.
Smith
and
L. X.
Dang
,
J. Chem. Phys.
100
,
3757
(
1994
).
31.
L.
Dang
and
D. E.
Smith
,
J. Chem. Phys.
99
,
6950
(
1993
).
32.
I.
Joung
and
T.
Cheatham
,
J. Phys. Chem. B
112
,
9020
(
2008
).
33.
L.
Vrbka
and
P.
Jungwirth
,
J. Mol. Liq.
134
,
64
(
2007
).
34.
D.
Corradini
,
M.
Rovere
, and
P.
Gallo
,
J. Chem. Phys.
132
,
134508
(
2010
).
35.
D.
Corradini
,
M.
Rovere
, and
P.
Gallo
,
J. Phys. Chem. B
115
,
1461
(
2011
).
36.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
37.
F.
Moucka
,
M.
Lisal
,
J.
Skvor
,
J.
Jirsak
,
I.
Nezbeda
, and
W.
Smith
,
J. Phys. Chem. B
115
,
7849
(
2011
).
38.
E.
Sanz
and
C.
Vega
,
J. Chem. Phys.
126
,
014507
(
2007
).
39.
J. L.
Aragones
,
E.
Sanz
, and
C.
Vega
,
J. Chem. Phys.
136
,
244508
(
2012
).
40.
I.
Joung
and
T.
Cheatham
,
J. Phys. Chem. B
113
,
13279
(
2009
).
41.
M.
Lisal
,
W.
Smith
, and
J.
Kolafa
,
J. Phys. Chem. B
109
,
12956
(
2005
).
42.
A. S.
Paluch
,
S.
Jayaraman
,
J. K.
Shah
, and
E. J.
Maginn
,
J. Chem. Phys.
133
,
124505
(
2010
).
43.
F.
Moucka
,
M.
Lisal
, and
W. R.
Smith
,
J. Phys. Chem. B
116
,
5468
(
2012
).
44.
D. J.
Adams
and
I. R.
McDonald
,
Physica B
79
,
159
(
1975
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4745205 for a complete description of the parameters of the Tosi-Fumi potential for alkali halides, and for the parameters of the Smith-Dang and Joung-Cheatam models of NaCl.
46.
H. A.
Lorentz
,
Ann. Phys.
248
,
127
(
1881
).
47.
D.
Berthelot
,
Comptes rendus hebdomadaires des séances de l’Académie des Sciences
126
,
1703
(
1898
).
48.
A. J. C.
Ladd
and
L. V.
Woodcock
,
Chem. Phys. Lett.
51
,
155
(
1977
).
49.
A. J. C.
Ladd
and
L. V.
Woodcock
,
Mol. Phys.
36
,
611
(
1978
).
50.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
116
,
9352
(
2002
).
51.
S.
Yoo
,
X. C.
Zeng
, and
J. R.
Morris
,
J. Chem. Phys.
120
,
1654
(
2004
).
52.
O. A.
Karim
and
A. D. J.
Haymet
,
J. Chem. Phys.
89
,
6889
(
1988
).
53.
E. G.
Noya
,
C.
Vega
, and
E.
de Miguel
,
J. Chem. Phys.
128
,
154507
(
2008
).
54.
R. G.
Fernandez
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
55.
D.
Rozmanov
and
P. G.
Kusalik
,
Phys. Chem. Chem. Phys.
13
,
15501
(
2011
).
56.
V. C.
Weiss
,
M.
Rullich
,
C.
Kohler
, and
T.
Frauenheim
,
J. Chem. Phys.
135
,
034701
(
2011
).
57.
D.
Frenkel
and
A. J. C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
58.
C.
Vega
and
E. G.
Noya
,
J. Chem. Phys.
127
,
154113
(
2007
).
59.
E. G.
Noya
,
M. M.
Conde
, and
C.
Vega
,
J. Chem. Phys.
129
,
104704
(
2008
).
60.
C.
Vega
,
E.
Sanz
,
E. G.
Noya
, and
J. L. F.
Abascal
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
61.
J.
Kolafa
and
I.
Nezbeda
,
Fluid Phase Equilib.
100
,
1
(
1994
).
62.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
63.
R.
Agrawal
and
D. A.
Kofke
,
Phys. Rev. Lett.
74
,
122
(
1995
).
64.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
23
(
1995
).
65.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
66.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
,
London
,
2002
).
67.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1987
).
68.
D. V.
der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
70.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
71.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
72.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
73.
J.
Akella
,
S.
Vaidya
, and
G.
Kennedy
,
Phys. Rev.
185
,
1135
(
1969
).
74.
J.
Kolafa
and
I.
Nezbeda
, “
FORTRAN code for the Kolafa and Nezbeda equation of state
,” Sklogwiki (
2010
), see www.sklogwiki.org.
75.
J. K.
Johnson
,
E. A.
Muller
, and
K. E.
Gubbins
,
J. Phys. Chem.
98
,
6413
(
1994
).
76.
A.
Ubbelohde
,
The Molten State of Matter Melting and Crystal Structure
(
Wiley
,
1978
).
77.
N.
March
and
M.
Tosi
,
Coulomb Liquids
(
Academic
,
1984
).
78.
B.
Wunderlich
,
Thermal Analysis of Polymeric Materials
(
Springer
,
2005
).
79.
Q.
An
,
L.
Zheng
,
R.
Fu
,
S.
Ni
, and
S.
Luo
,
J. Chem. Phys.
125
,
154510
(
2006
).
80.
G.
Janz
,
Molten Salts Handbook
(
Academic
,
1967
).
81.
J.
Alejandre
and
J.
Hansen
,
Phys. Rev. E
76
,
061505
(
2007
).
82.
M.
Sangster
and
M.
Dixon
,
Adv. Phys.
23
,
247
(
1976
).
83.
P.
Tangney
and
S.
Scandolo
,
J. Chem. Phys.
119
,
9673
(
2003
).
84.
M.
Cavallari
,
C.
Cavazzoni
, and
M.
Ferrario
,
Mol. Phys.
102
,
959
(
2004
).

Supplementary Material

You do not currently have access to this content.