In this work, terahertz and Fourier transform far-infrared (FTFIR) synchrotron spectra of methyl mercaptan, CH3SH, have been investigated in order to provide new laboratory information for enhanced observations of this species in interstellar molecular clouds and star-forming regions. Like its methanol cousin, methyl mercaptan has particularly rich spectra associated with its large-amplitude internal rotation that extend throughout the THz and FIR regions. We have recorded new spectra for CH3SH from 1.1-1.5 and 1.790–1.808 THz at the University of Cologne as well as high-resolution FTFIR synchrotron spectra from 50-550 cm−1 at 0.001 cm−1 resolution on the far-IR beam-line at the Canadian Light Source. Assignments are reported for rotational quantum numbers up to J ≈ 40 and K ≈ 15, and torsional states up to vt = 2 for the THz measurements and vt = 3 for the FTFIR observations. The THz and FTFIR measurements together with literature results have been combined in a global analysis of a dataset comprising a total of 1725 microwave and THz frequencies together with ∼18000 FTFIR transitions, ranging up to vt = 2 and Jmax = 30 for MW/THz and 40 for FTFIR. The global fit employs 78 torsion-rotation parameters and has achieved a weighted standard deviation of ∼1.1. A prediction list (vt ≤ 2, J ≤ 45 and K ≤ 20) has been generated from the model giving essentially complete coverage of observable CH332SH transitions within the bandwidths of major new astronomical facilities such as HIFI (Heterodyne Instrument for the Far Infrared) on the Herschel Space Observatory, ALMA (Atacama Large Millimeter Array), SOFIA (Stratospheric Observatory For Infrared Astronomy) and APEX (Atacama Pathfinder Experiment) to close to spectroscopic accuracy.

1.
S.
Vance
,
L. E.
Christensen
,
C. R.
Webster
, and
K.
Sung
,
Planet. Space Sci.
59
,
299
(
2011
).
2.
B. E.
Turner
,
Astrophys. J. Lett.
213
,
L75
(
1975
).
3.
R. A.
Linke
,
M. A.
Frerking
, and
P.
Thaddeus
,
Astrophys. J. Lett.
234
,
L139
(
1979
).
4.
E.
Gibb
,
A.
Nummelin
,
W. M.
Irvine
,
D. C. B.
Whittet
, and
P.
Bergman
,
Astrophys. J.
545
,
309
(
2000
).
5.
F. L.
Bettens
,
K. V. L. N.
Sastry
,
E.
Herbst
,
S.
Albert
,
L. C.
Oesterling
, and
F. C.
De Lucia
,
Astrophys. J.
510
,
789
(
1999
), with the extended assignment and prediction tables provided in the online version.
6.
A.
Nummelin
,
P.
Bergman
,
A.
Hjalmarson
,
P.
Friberg
,
W. M.
Irvine
,
T. J.
Millar
,
M.
Ohishi
, and
S.
Saito
,
Astrophys. J. Suppl. S.
128
,
213
(
2000
).
7.
E.
Herbst
and
E.
Van Dishoeck
,
Ann. Rev. Astron. Astrophys.
47
,
427
(
2009
).
8.
T.
Kojima
and
T.
Nishikawa
,
J. Phys. Soc. Jpn.
12
,
680
(
1957
).
9.
T.
Kojima
,
J. Phys. Soc. Jpn.
15
,
1284
(
1960
).
10.
R. M.
Lees
and
M. A.
Mohammadi
,
Can. J. Phys.
58
,
1640
(
1980
).
11.
K. V. L. N.
Sastry
,
E.
Herbst
,
R. A.
Booker
, and
F. C.
De Lucia
,
J. Mol. Spectrosc.
116
,
120
(
1986
).
12.
E. D.
Palik
,
D. G.
Burkhard
, and
R. L.
Wallis
,
J. Mol. Spectrosc.
23
,
425
(
1967
).
13.
K.
Nakagawa
and
J. W. C.
Johns
,
J. Mol. Spectrosc.
138
,
102
(
1989
).
14.
K.
Nakagawa
,
S.
Tsunekawa
, and
T.
Kojima
,
J. Mol. Spectrosc.
126
,
329
(
1987
).
15.
Li-Hong
Xu
,
J.
Fisher
,
R. M.
Lees
,
H.-Y.
Shi
,
J. T.
Hougen
,
J. C.
Pearson
,
B. J.
Drouin
,
G. A.
Blake
, and
R.
Braakman
,
J. Mol. Spectrosc.
251
,
305
(
2008
).
16.
J. C.
Pearson
,
C. S.
Brauer
,
B. J.
Drouin
, and
Li-Hong
Xu
,
Can. J. Phys.
87
,
449
(
2009
).
17.
Li-Hong
Xu
,
R. M.
Lees
, and
J. T.
Hougen
,
J. Chem. Phys.
110
,
3835
(
1999
).
18.
R. M.
Lees
,
Li-Hong
Xu
,
J. W. C.
Johns
,
B. P.
Winnewisser
, and
M.
Lock
,
J. Mol. Spectrosc.
243
,
168
(
2007
).
19.
D. M.
Cragg
,
A. M.
Sobolev
, and
P. D.
Godfrey
,
Mon. Not. R. Astron. Soc.
360
,
533
(
2005
).
20.
See http://spec.jpl.nasa.gov/ftp/pub/calpgm/SMAP/ for download of the SMAP spectral analysis program available from JPL.
21.
S.
Tsunekawa
,
I.
Taniguchi
,
A.
Tambo
,
T.
Nagai
, and
T.
Kojima
,
J. Mol. Spectrosc.
134
,
63
(
1989
).
22.
D. G.
Burkhard
and
D. M.
Dennison
,
J. Mol. Spectrosc.
3
,
299
(
1959
).
23.
G.
Moruzzi
,
B. P.
Winnewisser
,
M.
Winnewisser
,
I.
Mukhopadhyay
, and
F.
Strumia
,
Microwave, Infrared, and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm−1
(
CRC Press
,
Boca Raton, FL
,
1995
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4745792 for file 1 containing output from the global fit that gives the values of the fitted parameters together with the listing of the assigned transition frequencies, file 2 that provides the coefficients for J(J+1) power-series expansions of the term values of the assigned sub-states, and file 3(a) Ab initio molecular structures from Gaussian in internal coordinates (Å and degrees) for methanol and methyl mercaptan at the bottom and top of the torsional potential barrier and 3(b) atomic Cartesian coordinates (in Å) in the a, b, c principal-axis systems for methanol and methyl mercaptan at the bottom and top of the torsional potential barrier.
25.
See http://www.westgrid.ca/support/quickstart/gres for a description of the Westgrid Grex facility.
26.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, revision C.01, Gaussian, Inc., Wallingford CT,
2010
.
27.
R. M.
Lees
,
J. Mol. Spectrosc.
33
,
124
(
1970
).
28.
R. M.
Lees
,
J. Chem. Phys.
59
,
2690
(
1973
).
29.
W. H.
Kirchhoff
,
J. Mol. Spectrosc.
41
,
333
(
1972
).
30.
C. S.
Brauer
,
K.
Sung
,
J. C.
Pearson
,
L. R.
Brown
, and
Li-Hong
Xu
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
128
(
2012
).
31.
H. S. P.
Müller
,
S.
Thorwirth
,
D. A.
Roth
, and
G.
Winnewisser
,
Astron. Astrophys.
370
,
L49
(
2001
).
32.
H. S. P.
Müller
,
F.
Schlöder
,
J.
Stutzki
, and
G.
Winnewisser
,
J. Mol. Struct.
742
,
215
(
2005
).
33.
The CDMS database is available online at http://www.astro.uni-koeln.de/cdms/.

Supplementary Material

You do not currently have access to this content.