A new four-dimensional ab initio potential energy surface for N2O−He is constructed at the CCSD(T) level with an aug-cc-pVQZ basis set together with bond functions. The vibrational coordinates Q1 and Q3 of N2O are explicitly included, due to the strong coupling between the symmetric and asymmetric stretches of N2O. A global potential energy surface is obtained by fitting the original potential points to a four-dimensional Morse/long range (MLR) analytical form. In the fitting, the ab initio noise in the long range region of the potential is smoothed over by theoretically fixed long range parameters. Two-dimensional intermolecular potentials for both the ground and the excited υ3 states of N2O are then constructed by vibrationally averaging the four-dimensional potential. Based on the two-dimensional potentials, we use the path integral Monte Carlo algorithm to calculate the vibrational band origin shifts for the N2O−HeN clusters using a first order perturbation theory estimate. The calculated shifts agree reasonably well with the experimental values and reproduce the evolution tendency from dimer to large clusters.

1.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
117
,
2586
(
2002
).
2.
Y. J.
Xu
,
W.
Jäger
,
J.
Tang
, and
A. R. W.
McKellar
,
Phys. Rev. Lett.
91
,
163401
(
2003
).
3.
Y. J.
Xu
,
N.
Blinov
,
W.
Jäger
, and
P.-N.
Roy
,
J. Chem. Phys.
124
,
081101
(
2006
).
4.
Y. J.
Xu
and
W.
Jäger
,
J. Chem. Phys.
119
,
5457
(
2003
).
5.
J.
Tang
,
A. R. W.
McKellar
,
F.
Mezzacapo
, and
S.
Moroni
,
Phys. Rev. Lett.
92
,
145503
(
2004
).
6.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
119
,
754
(
2003
).
7.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
119
,
5467
(
2003
).
8.
J.
Tang
and
A. R. W.
McKellar
,
J. Chem. Phys.
121
,
181
(
2004
).
9.
F.
Paesani
,
Y.
Kwon
, and
K. B.
Whaley
,
Phys. Rev. Lett.
94
,
153401
(
2005
).
10.
A. R. W.
McKellar
,
Y. J.
Xu
, and
W.
Jäger
,
Phys. Rev. Lett.
97
,
183401
(
2006
).
11.
A. R. W.
McKellar
,
J. Chem. Phys.
127
,
044315
(
2007
).
12.
A. R. W.
McKellar
,
Y. J.
Xu
, and
W.
Jäger
,
J. Phys. Chem. A
111
,
7329
(
2007
).
13.
A. R. W.
McKellar
,
J. Chem. Phys.
128
,
044308
(
2008
).
14.
K.
Nauta
and
R. E.
Miller
,
J. Chem. Phys.
115
,
10254
(
2001
).
15.
B. T.
Chang
,
O.
Akin-Ojo
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Phys.
119
,
11654
(
2003
).
16.
F.
Paesani
and
K. B.
Whaley
,
J. Chem. Phys.
121
,
5293
(
2004
).
17.
Y. Z.
Zhou
and
D. Q.
Xie
,
J. Chem. Phys.
120
,
8575
(
2004
).
18.
Y. Z.
Zhou
,
D. Q.
Xie
, and
D. H.
Zhang
,
J. Chem. Phys.
124
,
144317
(
2006
).
19.
L.
Wang
,
D.
Xie
,
H.
Guo
,
H.
Li
,
P.-N.
Roy
, and
R. J.
Le Roy
,
J. Mol. Spectrosc.
267
,
136
(
2011
).
20.
H.
Li
and
R. J.
Le Roy
,
Phys. Chem. Chem. Phys.
10
,
4128
(
2008
).
21.
H.
Li
,
N.
Blinov
,
P.-N.
Roy
, and
R. J.
Le Roy
,
J. Chem. Phys.
130
,
144305
(
2009
).
22.
Y.
Kwon
and
K. B.
Whaley
,
J. Chem. Phys.
115
,
10146
(
2001
).
23.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
24.
E. W.
Draeger
and
D. M.
Ceperley
,
Phys. Rev. Lett.
90
,
065301
(
2003
).
25.
N.
Blinov
,
X.
Song
, and
P.-N.
Roy
,
J. Chem. Phys.
120
,
5916
(
2004
).
26.
N.
Blinov
and
P.-N.
Roy
,
J. Low Temp. Phys.
140
,
253
(
2005
).
27.
M.
Boninsegni
,
N. V.
Prokof’ ev
, and
B. V.
Svistunov
,
Phys. Rev. E
74
,
036701
(
2006
).
28.
M.
Boninsegni
,
N. V.
Prokof’ ev
, and
B. V.
Svistunov
,
Phys. Rev. Lett.
96
,
070601
(
2006
).
29.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2006.1, a package of ab initio programs,
2006
, see http://www.molpro.net.
30.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
31.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
32.
T. B.
Pedersen
,
B.
Fernandez
,
H.
Koch
, and
J.
Makarewicz
,
J. Chem. Phys.
115
,
8431
(
2001
).
33.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
34.
R. J.
Le Roy
,
N. S.
Dattani
,
J. A.
Coxon
,
A. J.
Ross
,
P.
Crozet
, and
C.
Linton
,
J. Chem. Phys.
131
,
204309
(
2009
).
36.
J. M. L. J.
Reinartz
,
W. L.
Meerts
, and
A.
Dymanus
,
Chem. Phys.
31
,
19
(
1978
).
37.
R. J.
Le Roy
,
J. Mol. Spectrosc.
191
,
223
(
1998
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4749248 for ASCII files containing listings of the ab initio energies and of the parameters defining our new 4D potential energy surface for N2O–He, for FORTRAN subroutines for generating those 4D and vibrationally averaged 2D potentials for υ3 = 0 and 1, and for a listing of the calculated frequency shifts shown in Fig. 3.
39.
R. A.
Aziz
,
A. R.
Janzen
, and
M. R.
Moldover
,
Phys. Rev. Lett.
74
,
1586
(
1995
).
40.
R. A.
Toth
,
J. Opt. Soc. Am. B
4
,
357
(
1987
).
41.
M.
Kobayashi
and
I.
Suzuki
,
J. Mol. Spectrosc.
125
,
24
(
1987
).
42.
D.
Marx
and
M. H.
Huser
,
J. Phys.: Condens. Matter
11
,
R117
(
1999
).
43.
R. J.
Le Roy
,
M. R.
Davies
, and
M. E.
Lam
,
J. Phys. Chem.
95
,
2167
(
1991
).
44.
Z.
Li
,
L. C.
Wang
,
H.
Ran
,
D. Q.
Xie
,
N.
Blinov
,
P.-N.
Roy
, and
H.
Guo
,
J. Chem. Phys.
128
,
224513
(
2008
).

Supplementary Material

You do not currently have access to this content.