In the current work we apply the completeness-optimization paradigm [P. Manninen and J. Vaara, J. Comput. Chem.27, 434 (2006) https://doi.org/10.1002/jcc.20358] to investigate the basis set convergence of the moments of the ground-state electron momentum density at the self-consistent field level of theory. We present a black-box completeness-optimization algorithm that can be used to generate computationally efficient basis sets for computing any property at any level of theory. We show that the complete basis set (CBS) limit of the moments of the electron momentum density can be reached more cost effectively using completeness-optimized basis sets than using conventional, energy-optimized Gaussian basis sets. By using the established CBS limits, we generate a series of smaller basis sets which can be used to systematically approach the CBS and to perform calculations on larger, experimentally interesting systems.

1.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
2.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
3.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
,
J. Chem. Phys.
100
,
7410
(
1994
).
4.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
5.
F.
Jensen
,
J. Chem. Phys.
115
,
9113
(
2001
).
6.
F.
Jensen
,
J. Chem. Phys.
116
,
7372
(
2002
).
7.
F.
Jensen
,
J. Chem. Phys.
117
,
9234
(
2002
).
8.
F.
Jensen
and
T.
Helgaker
,
J. Chem. Phys.
121
,
3463
(
2004
).
9.
F.
Jensen
,
J. Phys. Chem. A
111
,
11198
(
2007
).
10.
P.
Manninen
and
J.
Vaara
,
J. Comput. Chem.
27
,
434
(
2006
).
11.
S.
Ikäläinen
,
P.
Lantto
,
P.
Manninen
, and
J.
Vaara
,
J. Chem. Phys.
129
,
124102
(
2008
).
12.
S.
Ikäläinen
,
P.
Lantto
,
P.
Manninen
, and
J.
Vaara
,
Phys. Chem. Chem. Phys.
11
,
11404
(
2009
).
13.
S.
Ikäläinen
,
M.
Romalis
,
P.
Lantto
, and
J.
Vaara
,
Phys. Rev. Lett.
105
,
153001
(
2010
).
14.
A. J.
Thakkar
,
Adv. Chem. Phys.
128
,
303
(
2004
).
15.
M.
Coplan
,
J.
Moore
, and
J.
Doering
,
Rev. Mod. Phys.
66
,
985
(
1994
).
16.
M. J.
Cooper
,
P. E.
Mijnarends
,
N.
Shiotani
,
N.
Sakai
, and
A.
Bansil
,
X-Ray Compton Scattering
, Oxford Series on Synchrotron Radiation Vol. 5 (
Oxford University Press
,
2004
).
17.
M. J.
Cooper
,
Rep. Prog. Phys.
48
,
415
(
1985
).
18.
P.
Kaijser
and
V. H.
Smith
,
Adv. Quantum Chem.
10
,
37
(
1977
).
19.
A.
Erba
and
C.
Pisani
,
J. Comput. Chem.
33
,
822
(
2012
).
20.
P.
Eisenberger
and
P. M.
Platzman
,
Phys. Rev. A
2
,
415
(
1970
).
21.
C.
Blaas
,
J.
Redinger
,
S.
Manninen
,
V.
Honkimäki
,
K.
Hämäläinen
, and
P.
Suortti
,
Phys. Rev. Lett.
75
,
1984
(
1995
).
22.
K.
Hämäläinen
,
S.
Manninen
,
C.-C.
Kao
,
W.
Caliebe
,
J. B.
Hastings
,
A.
Bansil
,
S.
Kaprzyk
, and
P. M.
Platzman
,
Phys. Rev. B
54
,
5453
(
1996
).
23.
A. J.
Thakkar
,
J. Chem. Phys.
86
,
5060
(
1987
).
24.
S.
Huotari
,
B.
Boldrini
,
V.
Honkimäki
,
P.
Suortti
, and
W.
Weyrich
,
J. Synchrotron Radiat.
16
,
672
(
2009
).
25.
S.
Huotari
,
J. A.
Soininen
,
T.
Pylkkänen
,
K.
Hämäläinen
,
A.
Issolah
,
A.
Titov
,
J.
McMinis
,
J.
Kim
,
K.
Esler
,
D. M.
Ceperley
,
M.
Holzmann
, and
V.
Olevano
,
Phys. Rev. Lett.
105
,
086403
(
2010
).
26.
H.
Sakurai
,
H.
Ota
,
N.
Tsuji
,
M.
Itou
, and
Y.
Sakurai
,
J. Phys. B
44
,
065001
(
2011
).
27.
J.
Okada
,
P.
Sit
,
Y.
Watanabe
,
Y.
Wang
,
B.
Barbiellini
,
T.
Ishikawa
,
M.
Itou
,
Y.
Sakurai
,
A.
Bansil
,
R.
Ishikawa
,
M.
Hamaishi
,
T.
Masaki
,
P.-F.
Paradis
,
K.
Kimura
, and
S.
Nanao
,
Phys. Rev. Lett.
108
,
067402
(
2012
).
28.
Ch.
Bellin
,
B.
Barbiellini
,
S.
Klotz
,
T.
Buslaps
,
G.
Rousse
,
Th.
Strässle
, and
A.
Shukla
,
Phys. Rev. B
83
,
094117
(
2011
).
29.
Y.
Sakurai
,
M.
Itou
,
B.
Barbiellini
,
P. E.
Mijnarends
,
R. S.
Markiewicz
,
S.
Kaprzyk
,
J.-M.
Gillet
,
S.
Wakimoto
,
M.
Fujita
,
S.
Basak
,
Y. J.
Wang
,
W.
Al-Sawai
,
H.
Lin
,
A.
Bansil
, and
K.
Yamada
,
Science
332
,
698
(
2011
).
30.
I.
Juurinen
,
K.
Nakahara
,
N.
Ando
,
T.
Nishiumi
,
H.
Seta
,
N.
Yoshida
,
T.
Morinaga
,
M.
Itou
,
T.
Ninomiya
,
Y.
Sakurai
,
E.
Salonen
,
K.
Nordlund
,
K.
Hämäläinen
, and
M.
Hakala
,
Phys. Rev. Lett.
107
,
197401
(
2011
).
31.
F.
Lehmkühler
,
A.
Sakko
,
C.
Sternemann
,
M.
Hakala
,
K.
Nygård
,
C. J.
Sahle
,
S.
Galambosi
,
I.
Steinke
,
S.
Tiemeyer
,
A.
Nyrow
,
T.
Buslaps
,
D.
Pontoni
,
M.
Tolan
, and
K.
Hämäläinen
,
J. Phys. Chem. Lett.
1
,
2832
(
2010
).
32.
L.
Shi
,
K.
Liu
,
C.
Ning
, and
J.
Deng
,
Sci. China, Ser. G
54
,
1981
(
2011
).
33.
J. K.
Deng
,
G. Q.
Li
,
Y.
He
,
J. D.
Huang
,
H.
Deng
,
X. D.
Wang
,
F.
Wang
,
Y. A.
Zhang
,
C. G.
Ning
,
N. F.
Gao
,
Y.
Wang
,
X. J.
Chen
, and
Y.
Zheng
,
J. Chem. Phys.
114
,
882
(
2001
).
34.
W. N.
Pang
,
J. F.
Gao
,
C. J.
Ruan
,
R. C.
Shang
,
A. B.
Trofimov
, and
M. S.
Deleuze
,
J. Chem. Phys.
112
,
8043
(
2000
).
35.
Z. H.
Luo
,
C. G.
Ning
,
K.
Liu
,
Y. R.
Huang
, and
J. K.
Deng
,
J. Phys. B
42
,
165205
(
2009
).
36.
R. K.
Pathak
,
B. S.
Sharma
, and
A. J.
Thakkar
,
J. Chem. Phys.
85
,
958
(
1986
).
37.
A. J.
Thakkar
and
W. A.
Pedersen
,
Int. J. Quantum Chem., Symp.
38
,
327
(
1990
).
38.
A. K.
Roy
and
A. J.
Thakkar
,
Chem. Phys. Lett.
362
,
428
(
2002
).
39.
J.
Wang
and
V. H.
Smith
,
J. Phys. B
27
,
5159
(
1994
).
40.
B.
Miguel
and
J. M.
García de la Vega
,
Theor. Chem. Acc.
118
,
723
(
2007
).
41.
J. R.
Hart
and
A. J.
Thakkar
,
Int. J. Quantum Chem.
102
,
673
(
2005
).
42.
C.
Pisani
,
R.
Dovesi
, and
R.
Orlando
,
Int. J. Quantum Chem.
42
,
5
(
1992
).
43.
A.
Erba
,
C.
Pisani
,
S.
Casassa
,
L.
Maschio
,
M.
Schütz
, and
D.
Usvyat
,
Phys. Rev. B
81
,
165108
(
2010
).
44.
A.
Erba
,
M.
Itou
,
Y.
Sakurai
,
R.
Yamaki
,
M.
Ito
,
S.
Casassa
,
L.
Maschio
,
A.
Terentjes
, and
C.
Pisani
,
Phys. Rev. B
83
,
125208
(
2011
).
45.
C.
Pisani
,
A.
Erba
,
S.
Casassa
,
M.
Itou
, and
Y.
Sakurai
,
Phys. Rev. B
84
,
245102
(
2011
).
46.
P.
Jaiswal
and
A.
Shukla
,
Phys. Rev. A
75
,
022504
(
2007
).
47.
J.
Lehtola
,
M.
Hakala
,
J.
Vaara
, and
K.
Hämäläinen
,
Phys. Chem. Chem. Phys.
13
,
5630
(
2011
).
48.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
49.
P. E.
Regier
and
A. J.
Thakkar
,
J. Phys. B
18
,
3061
(
1985
).
50.
M.
Hakala
,
K.
Nygård
,
S.
Manninen
,
L. G. M.
Pettersson
, and
K.
Hämäläinen
,
Phys. Rev. B
73
,
035432
(
2006
).
51.
K.
Nygård
,
M.
Hakala
,
S.
Manninen
,
A.
Andrejczuk
,
M.
Itou
,
Y.
Sakurai
,
L. G. M.
Pettersson
, and
K.
Hämäläinen
,
Phys. Rev. E
74
,
031503
(
2006
).
52.
K.
Nygård
,
M.
Hakala
,
T.
Pylkkänen
,
S.
Manninen
,
T.
Buslaps
,
M.
Itou
,
A.
Andrejczuk
,
Y.
Sakurai
,
M.
Odelius
, and
K.
Hämäläinen
,
J. Chem. Phys.
126
,
154508
(
2007
).
53.
K.
Nygård
,
M.
Hakala
,
S.
Manninen
,
M.
Itou
,
Y.
Sakurai
, and
K.
Hämäläinen
,
Phys. Rev. Lett.
99
,
197401
(
2007
).
54.
M.
Hakala
,
K.
Nygård
,
J.
Vaara
,
M.
Itou
,
Y.
Sakurai
, and
K.
Hämäläinen
,
J. Chem. Phys.
130
,
034506
(
2009
).
55.
D. P.
Chong
,
Can. J. Chem.
73
,
79
(
1995
).
56.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
,
J. Comput. Chem.
33
,
1572
(
2012
).
57.
As all values of angular momentum l yield a separate profile, a complete basis set must be complete for all values of l.
58.
C.
Roothaan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
59.
J.
Lehtola
, ERKALE – HF/DFT from Hel, 2012, see http://erkale.googlecode.com.
60.
J. A.
Nelder
and
R.
Mead
,
Comput. J.
7
,
308
(
1965
).
61.
K. P.
Huber
,
G.
Herzberg
,
J. W.
Gallagher
, and
R. D.
Johnson
 III
, “
Constants of diatomic molecules
,” in
NIST Chemistry WebBook
, NIST Standard Reference Database Number 69, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
), see http://webbook.nist.gov.
62.
P.-O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
63.
T.
Tsuchimochi
and
G. E.
Scuseria
,
J. Chem. Phys.
133
,
141102
(
2010
).
64.
K.
Baarman
,
T.
Eirola
, and
V.
Havu
,
J. Chem. Phys.
134
,
134109
(
2011
).
65.
L.
Thøgersen
,
J.
Olsen
,
A.
Köhn
,
P.
Jørgensen
,
P.
Sałek
, and
T.
Helgaker
,
J. Chem. Phys.
123
,
074103
(
2005
).
66.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
,
J. Comput. Chem.
3
,
385
(
1982
).
67.
R.
Kikuchi
,
J. Chem. Phys.
22
,
148
(
1954
).
68.
A. M.
Simas
,
A. J.
Thakkar
, and
V. H.
Smith
,
Int. J. Quantum Chem.
21
,
419
(
1982
).
69.
p0⟩ is simply the normalization condition, giving the number of electrons.
70.
According to the virial theorem this is, in turn, the negative of the total energy if the system is in its ground-state geometry.
71.
See supplementary material at http://dx.doi.org/10.1063/1.4749272 for the coemd basis sets, their completeness profiles, and the values of the moments of the EMD of the molecules in Tables IV and V computed in the coemd, aug-cc, and aug-pc basis sets.
72.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
73.
See http://bse.pnl.gov for EMSL basis set exchange.
74.
To allow for rounding errors, a deviation of one unit in the last decimal is allowed in the values of the moments.

Supplementary Material

You do not currently have access to this content.