Using classical density functional theory (DFT) we analyze the structure of the density profiles and solvation pressures of negatively charged colloids confined in slit pores. The considered model, which was already successfully employed to study a real colloidal (silica) suspension [S. H. L. Klapp et al, Phys. Rev. Lett.100, 118303 (2008)

], involves only the macroions which interact via the effective Derjaguin-Landau-Verwey-Overbeek (DLVO) potential supplemented by a hard core interaction. The solvent enters implicitly via the screening length of the DLVO interaction. The free energy functional describing the colloidal suspension consists of a hard sphere contribution obtained from fundamental measure theory and a long range contribution which is treated using two types of approximations. One of them is the mean field approximation (MFA) and the remaining is based on Rosenfeld's perturbative method for constructing the Helmholtz energy functional. These theoretical calculations are carried out at different bulk densities and wall separations to compare finally to grand canonical Monte Carlo simulations. We also consider the impact of charged walls. Our results show that the perturbative DFT method yields generally qualitatively consistent and, for some systems, also quantitatively reliable results. In MFA, on the other hand, the neglect of charge-induced correlations leads to a breakdown of this approach in a broad range of densities.

1.
S. H. L.
Klapp
,
Y.
Zeng
,
D.
Qu
, and
R. v.
Klitzing
,
Phys. Rev. Lett.
100
,
118303
(
2008
).
2.
Y.
Rosenfeld
,
Phys. Rev. Lett.
63
,
980
(
1989
).
3.
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
4.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
Amsterdam
,
2006
).
5.
Y.
Rosenfeld
,
J. Chem. Phys.
98
,
8126
(
1993
).
6.
R.
Roth
,
R.
Evans
, and
S.
Dietrich
,
Phys. Rev. E
62
,
5360
(
2000
).
7.
M.
Schmidt
,
A.
Fortini
, and
M.
Dijkstra
,
J. Phys.: Condens. Matter
48
,
s3411
(
2003
).
8.
E.
Lomba
,
M.
Alvarez
,
L. L.
Lee
, and
N. G.
Almarza
,
J. Chem. Phys.
104
,
4180
(
1996
).
9.
E.
Kierlik
and
M. L.
Rosinberg
,
Phys. Rev. A
44
,
5025
(
1991
).
10.
Y.
Tang
and
J.
Wu
,
Phys. Rev. E
70
,
011201
(
2004
).
11.
S.
Karanikas
,
J.
Dzubiella
,
A.
Moncho-Jordá
, and
A. A.
Louis
,
J. Chem. Phys.
128
,
204704
(
2008
).
12.
S. H. L.
Klapp
,
S.
Grandner
,
Y.
Zeng
,
D.
Qu
, and
R. v.
Klitzing
,
J. Phys.: Condens. Matter
20
,
494232
(
2008
).
13.
S. H. L.
Klapp
and
S.
Grandner
,
J. Chem. Phys.
129
,
244703
(
2008
).
14.
S.
Grandner
,
Y.
Zeng
,
R. v.
Klitzing
, and
S. H. L.
Klapp
,
J. Chem. Phys.
131
,
154702
(
2009
).
15.
S. H. L.
Klapp
,
D.
Qu
, and
R. v.
Klitzing
,
J. Phys. Chem. B
111
,
1296
(
2007
).
16.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of Stability of Lyphobic Colloids
(
Elsevier
,
Amsterdam
,
1948
).
17.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
18.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
19.
S.
Bhattacharjee
,
M.
Elimelech
, and
M.
Borkovec
,
Croat. Chem. Acta
71
,
883
(
1998
).
20.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
Wiley VCH
,
Weinheim
,
2006
).
21.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
22.
Y.
Tang
,
J. Chem. Phys.
118
,
4140
(
2003
).
23.
E.
Waisman
,
Mol. Phys.
25
,
45
(
1972
).
24.
L. G.
MacDowell
,
M.
Muller
, and
D. V. K.
Binder
,
J. Chem. Phys.
113
,
419
(
2000
).
25.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
26.
R.
Evans
,
Adv. Phys.
28
,
143
(
1979
).
27.
R.
Evans
and
M. B.
Marconi
,
J. Chem. Phys.
86
,
7138
(
1987
).
28.
B.
Widom
,
J. Chem. Phys.
39
,
2802
(
1963
).
29.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
,
London
,
1996
).
30.
M.
Schoen
and
S. H. L.
Klapp
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
Wiley
,
New Jersey
,
2007
).
31.
C.
Grodon
,
M.
Dijkstra
,
R.
Evans
, and
R.
Roth
,
Mol. Phys.
103
,
3009
(
2005
).
32.
R.
Evans
,
J. R.
Henderson
,
D. C.
Hoyle
,
A. O.
Parry
, and
Z. A.
Sabeur
,
Mol. Phys.
80
,
755
(
1993
).
You do not currently have access to this content.