We present a visible-infrared sum-frequency spectroscopic technique that is capable of simultaneously determining the magnitude and phase of the sample response from a single set of experimental conditions. This is especially valuable in cases where the phase stability is high, as in collinear beam geometries, as it enables multiple experiments to be performed without re-measuring the local oscillator phase or the reference phase. After illustrating the phase stability achievable with such a geometry, we provide a technique for quantitatively determining the magnitude and phase from a single set of two-dimensional spectral-temporal interference fringes. A complete demonstration is provided for the C–H stretching frequency region at the surface of an octadecyltricholosilane film.

1.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
2.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
,
Appl. Spectrosc. Rev.
40
,
103
(
2005
).
3.
G. L.
Richmond
,
Chem. Rev.
102
,
2693
(
2002
).
4.
Y. R.
Shen
and
V.
Ostroverkhov
,
Chem. Rev.
106
,
1140
(
2006
).
5.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
53
,
437
(
2002
).
6.
A. J.
Hopkins
,
C. L.
McFearin
, and
G. L.
Richmond
,
Curr. Opin. Solid State Mater. Sci.
9
,
19
(
2005
).
7.
J.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
10656
(
2010
).
8.
N.
Ji
,
V.
Ostroverkhov
,
C.
Chen
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
129
,
10056
(
2007
).
9.
K. C.
Jena
,
P. A.
Covert
,
S. A.
Hall
, and
D. K.
Hore
,
J. Phys. Chem. C
115
,
15570
(
2011
).
10.
L.
Velarde
,
X.
Zhang
,
Z.
Lu
,
A. G.
Joly
,
Z.
Wang
, and
H.-F.
Wang
,
J. Chem. Phys.
135
,
241102
(
2011
).
11.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Opt. Lett.
15
,
1276
(
1990
).
12.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Chem. Phys. Lett.
172
,
303
(
1990
).
13.
L.
Zhang
,
C.
Tian
,
G.
Waychunas
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
130
,
7686
(
2008
).
14.
C.
Tian
,
N.
Ji
,
G. A.
Waychunas
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
130
,
13033
(
2008
).
15.
C.
Tian
and
Y. R.
Shen
,
J. Am. Chem. Soc.
131
,
2790
(
2009
).
16.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
,
Phys. Rev. Lett.
100
,
096102
(
2008
).
17.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
130
,
204704
(
2009
).
18.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
A. N.
Bordenyuk
, and
A. V.
Benderskii
,
J. Am. Chem. Soc.
130
,
2271
(
2008
).
19.
S.
Yamaguchi
and
T.
Tahara
,
J. Chem. Phys.
129
,
101102
(
2008
).
20.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
6867
(
2010
).
21.
X.
Chen
,
W.
Hau
,
Z.
Huang
, and
H.
Allen
,
J. Am. Chem. Soc.
132
,
11336
(
2010
).
22.
K. C.
Jena
,
P. A.
Covert
, and
D. K.
Hore
,
J. Chem. Phys.
134
,
044712
(
2011
).
23.
R.-R.
Feng
,
Y.
Guo
,
R.
,
L.
Velarde
, and
H.-F.
Wang
,
J. Phys. Chem. A
115
,
6015
(
2011
).
24.
K. C.
Jena
and
D. K.
Hore
,
J. Phys. Chem. C
113
,
15364
(
2009
).
25.
Y.
Liu
,
L. K.
Wolf
, and
M. C.
Messmer
,
Langmuir
17
,
4329
(
2001
).
26.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
,
J. Phys. Chem. C
113
,
6100
(
2009
).
27.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
(
2000
).
28.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
,
673
(
2002
).
29.
A.
Morita
,
J. Phys. Chem. B
110
,
3158
(
2006
).
30.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.-K.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
,
J. Am. Chem. Soc.
133
,
16875
(
2011
).
31.
S.
Ye
,
S.
Nihonyanagi
, and
K.
Uosaki
,
Phys. Chem. Chem. Phys.
3
,
3463
(
2001
).
You do not currently have access to this content.