We analyze the accuracy of the frozen density embedding (FDE) method, with hybrid and orbital-dependent exchange-correlation functionals, for the calculation of the total interaction energies of weakly interacting systems. Our investigation is motivated by the fact that these approaches require, in addition to the non-additive kinetic energy approximation, also approximate non-additive exact-exchange energies. Despite this further approximation, we find that the hybrid/orbital-dependent FDE approaches can reproduce the total energies with the same accuracy (about 1 mHa) as the one of conventional semi-local functionals. In many cases, thanks to error cancellation effects, hybrid/orbital-dependent approaches yield even the smallest error. A detailed energy-decomposition investigation is presented. Finally, the Becke-exchange functional is found to reproduce accurately the non-additive exact-exchange energies also for non-equilibrium geometries. These performances are rationalized in terms of a reduced-gradient decomposition of the non-additive exchange energy.

2.
W.
Yang
and
T.-S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
3.
T.
Amaka
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
4.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
131
,
114108
(
2009
).
5.
L.-W.
Wang
,
Z.
Zhao
, and
J.
Meza
,
Phys. Rev. B
77
,
165113
(
2008
).
6.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
,
J. Chem. Phys.
105
,
1968
(
1996
).
7.
M.
Gordon
,
M.
Freitag
,
P.
Bandyopadhyay
,
J.
Jensen
,
V.
Kairys
, and
W. J.
Stevens
,
J. Phys. Chem. A
105
,
293
(
2001
).
8.
I.
Adamovic
,
M. A.
Freitag
, and
M. S.
Gordon
,
J. Chem. Phys.
118
,
6725
(
2003
).
9.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
10.
D. G.
Fedorov
and
K.
Kitaura
,
J. Phys. Chem. A
111
,
6904
(
2007
).
11.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
12.
Q. A.
Smith
,
M. S.
Gordon
, and
L. V.
Slipchenko
,
J. Phys. Chem. A
115
,
11269
(
2011
).
13.
J.
He
,
C. D.
Paola
, and
L.
Kantorovich
,
J. Chem. Phys.
130
,
144104
(
2009
).
14.
M.
Gordon
,
J.
Mullin
,
S. R.
Pruitt
,
L. B.
Roskop
,
L. V.
Slipchenko
, and
J. A.
Boatz
,
J. Phys. Chem. B
113
,
9646
(
2009
).
15.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
16.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
New York
,
1990
).
17.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
18.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
19.
20.
P.
Cortona
and
A.
Monteleone
,
Int. J. Quantum Chem.
52
,
987
(
1994
).
21.
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Phys. Chem. A
111
,
12447
(
2007
).
22.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
23.
M. H.
Cohen
and
A.
Wasserman
,
J. Phys. Chem. A
111
,
2229
(
2007
).
24.
M. H.
Cohen
,
A.
Wasserman
,
R.
Car
, and
K.
Burke
,
J. Phys. Chem. A
113
,
2183
(
2009
).
25.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
26.
J.
Nafziger
,
Q.
Wu
, and
A.
Wasserman
,
J. Chem. Phys.
135
,
234101
(
2011
).
27.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
28.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
29.
T. A.
Wesolowski
in
Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
2006
), Vol. 10, p.
1
.
30.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
31.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
32.
T. A.
Wesolowski
,
N.
Vulliermet
, and
J.
Weber
,
J. Mol. Struct.: THEOCHEM
458
,
151
(
1998
).
33.
F.
Tran
,
J.
Weber
,
T. A.
Wesolowski
,
F.
Cheikh
,
Y.
Ellinger
, and
F.
Pauzat
,
J. Phys. Chem. B
106
,
8689
(
2002
).
34.
T. A.
Wesolowski
,
P.-Y.
Morgantini
, and
J.
Weber
,
J. Chem. Phys.
116
,
6411
(
2002
).
35.
T. A.
Wesolowski
and
F.
Tran
,
J. Chem. Phys.
118
,
2072
(
2003
).
36.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
37.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
38.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
39.
M.
Dulak
and
T. A.
Wesolowski
,
J. Mol. Model.
13
,
631
(
2007
).
40.
M.
Hodak
,
W.
Lu
, and
J.
Bernholc
,
J. Chem. Phys.
128
,
014101
(
2008
).
41.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
42.
S. M.
Beyhan
,
A. W.
Götz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
43.
E. V.
Stefanovich
and
T. N.
Truong
,
J. Chem. Phys.
104
,
2946
(
1996
).
44.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
45.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
46.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
47.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
48.
C.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
49.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
50.
A.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
51.
53.
J. W.
Kaminski
,
S.
Gusarov
,
T. A.
Wesolowski
, and
A.
Kovalenko
,
J. Phys. Chem. A
114
,
6082
(
2010
).
54.
D.
Jacquemin
,
B.
Mennucci
, and
C.
Adamo
,
Phys. Chem. Chem. Phys.
13
,
16987
(
2011
).
55.
J.
Neugebauer
,
J. Chem. Phys.
131
,
084104
(
2009
).
56.
A.
Kovyrshin
and
J.
Neugebauer
,
Chem. Phys.
391
,
147
(
2011
).
57.
G.
Fradelos
and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
7
,
213
(
2011
).
58.
G.
Fradelos
,
J. J.
Lutz
,
T. A.
Wesolowski
,
P.
Piecuch
, and
M.
Wloch
,
J. Chem. Theory Comput.
7
,
1647
(
2011
).
59.
G.
Fradelos
and
T. A.
Wesolowski
,
J. Phys. Chem. A
115
,
10018
(
2011
).
60.
X.
Zhou
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
Phys. Chem. Chem. Phys.
13
,
10565
(
2011
).
61.
S.
Höfener
,
A. S. P.
Gomes
, and
L.
Visscher
,
J. Chem. Phys.
136
,
044104
(
2012
).
62.
G.
Fradelos
,
J. J.
Lutz
,
T. A.
Wesolowski
,
P.
Piecuch
, and
M.
Wloch
,
Advances in the Theory of Quantum Systems in Chemistry and Physics
,
Progress in Theoretical Chemistry and Physics
Vol. 22, edited by
P. E. E.
Hoggan
,
E. J. J.
Brändas
,
J.
Maruani
,
P.
Piecuch
, and
G.
Delgado-Barrio
(
Springer
,
Netherlands
,
2012
), pp.
219
248
.
63.
A.
Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
64.
T. A.
Wesolowski
,
J. Am. Chem. Soc.
126
,
11444
(
2004
).
65.
J. P.
Perdew
,
A.
Ruzsinszky
,
L. A.
Constantin
,
J.
Sun
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
5
,
902
(
2009
).
66.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
67.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
68.
K. E.
Riley
,
B. T.
Op't Holt
, and
K. M.
Merz
,
J. Chem. Theory Comput.
3
,
407
(
2007
).
69.
S. F.
Sousa
,
P. A.
Fernandes
, and
M. J.
Ramos
,
J. Phys. Chem. A
111
,
10439
(
2007
).
70.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
71.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
72.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
73.
B.
Champagne
,
E. A.
Perpete
,
D.
Jacquemin
,
S. J. A.
van Gisbergen
,
E.-J.
Baerends
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Phys. Chem. A
104
,
4755
(
2000
).
74.
S.
Kümmel
,
L.
Kronik
, and
J. P.
Perdew
,
Phys. Rev. Lett.
93
,
213002
(
2004
).
75.
H.
Sekino
,
Y.
Maeda
,
M.
Kamiya
, and
K.
Hirao
,
J. Chem. Phys.
126
,
014107
(
2007
).
76.
F. A.
Bulat
,
A.
Toro-Labbé
,
B.
Champagne
,
B.
Kirtman
, and
W.
Yang
,
J. Chem. Phys.
123
,
014319
(
2005
).
77.
E.
Fabiano
and
F.
Della Sala
,
J. Chem. Phys.
126
,
214102
(
2007
).
78.
M.
Piacenza
,
S.
D’Agostino
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. B
80
,
153101
(
2009
).
79.
F.
Della Sala
,
E.
Fabiano
,
S.
Laricchia
,
S.
D’Agostino
, and
M.
Piacenza
,
Int. J. Quantum Chem.
110
,
2162
(
2010
).
80.
N.
Goving
,
Y.
Wang
,
A.
da Silva
, and
E.
Carter
,
Chem. Phys. Lett.
295
,
129
(
1998
).
81.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
82.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
83.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
).
84.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
).
85.
T.
Wesolowski
,
Phys. Rev. A
77
,
012504
(
2008
).
86.
F.
Aquilante
and
T. A.
Wesolowski
,
J. Chem. Phys.
135
,
084120
(
2011
).
87.
K.
Pernal
and
T.
Wesolowski
,
Int. J. Quantum Chem.
109
,
2520
(
2009
).
88.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
89.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
J. Chem. Phys.
133
,
164111
(
2010
).
90.
S.
Laricchia
,
E.
Fabiano
, and
F.
Della Sala
,
Chem. Phys. Lett.
518
,
114
(
2011
).
91.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
92.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
116
,
5374
(
2002
).
93.
F.
Della Sala
and
A.
Görling
,
Phys. Rev. Lett.
89
,
033003
(
2002
).
94.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
95.
K.
Kiewisch
,
G.
Eickerling
,
M.
Reiher
, and
J.
Neugebauer
,
J. Chem. Phys.
128
,
044114
(
2008
).
96.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
97.
Y. A.
Bernard
,
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Phys. A: Math. Theor.
41
,
055302
(
2008
).
98.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
7
,
2439
(
2011
).
99.
J. M. G.
Lastra
,
J. W.
Kamiński
, and
T. A.
Wesolowski
,
J. Chem. Phys.
129
,
074107
(
2008
).
100.
L. A.
Constantin
,
E.
Fabiano
,
S.
Laricchia
, and
F.
Della Sala
,
Phys. Rev. Lett.
106
,
186406
(
2011
).
101.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
102.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
5
,
2138
(
1994
).
103.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
104.
P.
de Silva
and
T. A.
Wesolowski
,
Phys. Rev. A
85
,
032518
(
2012
).
105.
O.
Roncero
,
M. P.
de Lara-Castells
,
P.
Villarreal
,
F.
Flores
,
J.
Ortega
,
M.
Paniagua
, and
A.
Aguado
,
J. Chem. Phys.
129
,
184104
(
2008
).
106.
O.
Roncero
,
A.
Zanchet
,
P.
Villarreal
, and
A.
Aguado
,
J. Chem. Phys.
131
,
234110
(
2009
).
107.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
108.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
133
,
084103
(
2010
).
109.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T.
Miller
 III
,
J. Chem. Phys.
134
,
164108
(
2011
).
110.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
111.
C. R.
Jacob
,
J. Chem. Phys.
135
,
244102
(
2011
).
112.
A.
Heßelmann
,
A. W.
Götz
,
F.
Della Sala
,
F.
Manby
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
113.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
114.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
115.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
116.
Y.
Zhao
and
D.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
117.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
118.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
119.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
120.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
121.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
122.
E.
Fabiano
,
M.
Piacenza
, and
F.
Della Sala
,
Phys. Chem. Chem. Phys.
11
,
9160
(
2009
).
123.
A. M.
Teale
and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
7
,
2991
(
2005
).
124.
TURBOMOLE version 6.4 (2012), a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, see http://www.turbomole.com.
125.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
126.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
127.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
128.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
129.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
130.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
131.
P.
Dirac
,
Proc. R. Soc. London, Ser. A
123
,
714
(
1929
).
132.
A.
Zupan
,
K.
Burke
,
M.
Enzerhof
, and
J. P.
Perdew
,
J. Chem. Phys.
106
,
10184
(
1997
).
133.
See supplementary material at http://dx.doi.org/10.1063/1.4730748 for a table with the supermolecular KS interaction energies and the perturbation theory expansion of the embedding energy error for hybrid functionals.
134.
M.
Dulak
,
J. W.
Kamiński
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).

Supplementary Material

You do not currently have access to this content.