We use a standard bead-spring model and molecular dynamics simulations to study the static properties of symmetric linear multiblock copolymer chains and their blocks under poor solvent conditions in a dilute solution from the regime close to theta conditions, where the chains adopt a coil-like formation, to the poorer solvent regime where the chains collapse obtaining a globular formation and phase separation between the blocks occurs. We choose interaction parameters as is done for a standard model, i.e., the Lennard-Jones fluid and we consider symmetric chains, i.e., the multiblock copolymer consists of an even number n of alternating chemically different A and B blocks of the same length NA = NB = N. We show how usual static properties of the individual blocks and the whole multiblock chain can reflect the phase behavior of such macromolecules. Also, how parameters, such as the number of blocks n can affect properties of the individual blocks, when chains are in a poor solvent for a certain range of n. A detailed discussion of the static properties of these symmetric multiblock copolymers is also given. Our results in combination with recent simulation results on the behavior of multiblock copolymer chains provide a complete picture for the behavior of these macromolecules under poor solvent conditions, at least for this most symmetrical case. Due to the standard choice of our parameters, our system can be used as a benchmark for related models, which aim at capturing the basic aspects of the behavior of various biological systems.

1.
G. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1990
).
2.
P. D.
Topham
,
A. J.
Parnell
, and
R. C.
Hiorns
,
J. Polym. Sci. Part B: Polym. Phys.
49
,
1131
(
2011
).
3.
M. W.
Matsen
and
M.
Schick
,
Macromolecules
27
,
7157
(
1994
).
4.
M.
Matsen
and
M.
Schick
,
Phys. Rev. Lett.
72
,
2660
(
1994
).
5.
M. W.
Matsen
and
M.
Schick
,
Macromolecules
27
,
6761
(
1994
).
6.
M. W.
Matsen
,
J. Chem. Phys.
102
,
3884
(
1995
).
7.
H.
Fried
and
K.
Binder
,
J. Chem. Phys.
94
,
8349
(
1991
).
8.
K.
Lewandowski
and
M.
Banaszak
,
Phys. Rev. E
84
,
011806
(
2011
).
9.
K.
Lewandowski
,
P.
Knychała
, and
M.
Banaszak
,
Phys. Status Solidi B
245
,
2524
(
2008
).
10.
K.
Lewandowski
and
M.
Banaszak
,
J. Non-Cryst. Solids
355
,
1289
(
2009
).
11.
O. F.
Olaj
,
B.
Neubauer
, and
G.
Zifferer
,
Macromol. Theory Simul.
7
,
171
(
1998
).
12.
O. F.
Olaj
,
B.
Neubauer
, and
G.
Zifferer
,
Macromol. Theory Simul.
7
,
181
(
1998
).
13.
N. G.
Fytas
and
P. E.
Theodorakis
,
J. Phys.: Condens. Matter
23
,
235106
(
2011
).
14.
P. E.
Theodorakis
and
N. G.
Fytas
,
EPL
93
,
43001
(
2011
).
15.
P. E.
Theodorakis
and
N. G.
Fytas
,
Soft Matter
7
,
1038
(
2011
).
16.
K.
Yue
and
K. A.
Dill
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
146
(
1995
).
17.
T. E.
Creighton
,
Protein Folding
(
Freeman
,
New York
,
1994
).
18.
S.
Wołoszczuk
,
M.
Banaszak
,
P.
Knychała
,
K.
Lewandowski
, and
M.
Radosz
,
J. Non-Cryst. Solids
354
,
4138
(
2008
).
19.
T. T.
Pham
,
B.
Dünweg
, and
J. R.
Prakash
,
Macromolecules
43
,
10084
(
2010
).
20.
S. K.
Das
,
J.
Horbach
, and
K.
Binder
,
J. Chem. Phys.
119
,
1547
(
2003
).
21.
P. E.
Theodorakis
,
W.
Paul
, and
K.
Binder
,
EPL
88
,
63002
(
2009
).
22.
P. E.
Theodorakis
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
133
,
104901
(
2010
).
23.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
24.
G. S.
Grest
and
M.
Murat
,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
, edited by
K.
Binder
(
Freeman
,
New York
,
1995
).
25.
G. S.
Grest
,
Macromolecules
27
,
3493
(
1994
).
26.
G. S.
Grest
and
M.
Murat
,
Macromolecules
26
,
3108
(
1993
).
27.
P. E.
Theodorakis
,
W.
Paul
, and
K.
Binder
,
Macromolecules
43
,
5137
(
2010
).
28.
P. E.
Theodorakis
,
W.
Paul
, and
K.
Binder
,
Eur. Phys. J. E
34
,
52
(
2011
).
29.
I.
Erukhimovich
,
P. E.
Theodorakis
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
134
,
054906
(
2011
).
30.
W.
Graessley
,
R. C.
Hayward
, and
G. S.
Grest
,
Macromolecules
32
,
3510
(
1999
).
31.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Simul.
1
,
173
(
1988
).
32.
Information about algorithms and implementation details for the gromacs package can be found at http://www.gromacs.org.
33.
P. J.
Flory
,
Statistical Mechanics of Chain Molecules
(
Interscience
,
New York
,
1969
).
34.
A. Yu.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
(
AIP
,
New York
,
1994
).
35.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
36.
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
,
Macromolecules
43
,
3094
(
2010
).
37.
P. E.
Theodorakis
,
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
135
,
164903
(
2011
).
38.
D.
Shirvanyants
,
S.
Panyukov
,
Q.
Liao
, and
M.
Rubinstein
,
Macromolecules
41
,
1475
(
2008
).
39.
P.
Beckrich
,
A.
Johner
,
A. N.
Semenov
,
S. P.
Obukhov
,
H.
Benoit
, and
J. P.
Wittmer
,
Macromolecules
40
,
3805
(
2007
).
40.
D. N.
Theodorou
and
U. W.
Suter
,
Macromolecules
18
,
1206
(
1985
).
41.
S.
Hadizadeh
,
A.
Linhananta
, and
S. S.
Plotkin
,
Macromolecules
44
,
6182
(
2011
).
42.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
You do not currently have access to this content.