We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.

1.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic
,
New York
,
1986
).
2.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids, Vol. 1: Fundamentals
(
Clarendon
,
Oxford
,
1984
).
3.
D.
Henderson
and
J. A.
Barker
,
Physical Chemistry, an Advanced Treatise
(
Academic Press
,
New York
,
1971
), Vol. VIIIA, p.
377
.
4.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
5.
R.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
6.
R.
Zwanzig
,
J. Chem. Phys.
23
,
1915
(
1955
).
7.
F. P.
Buff
and
F. M.
Schindler
,
J. Chem. Phys.
29
,
1075
(
1958
).
8.
D.
Chandler
and
J. D.
Weeks
,
Phys. Rev. Lett.
25
,
149
(
1970
).
9.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
10.
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
Adv. Chem. Phys.
34
,
105
(
1976
).
11.
D.
Chandler
,
J. D.
Weeks
, and
H. C.
Andersen
,
Science
220
,
787
(
1983
).
12.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
13.
D.
Henderson
,
O. H.
Scalise
, and
W. S.
Smith
,
J. Chem. Phys.
72
,
2431
(
1980
).
14.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
15.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
,
Phys. Chem. Chem. Phys.
13
,
6397
(
2011
).
16.
A.
Lomakin
,
N.
Asherie
, and
G. B.
Benedek
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
9465
(
1999
).
18.
S. C.
Glotzer
and
M. J.
Solomon
,
Nature Mater.
6
,
557
(
2007
).
19.
L.
Verlet
and
J. J.
Weis
,
Mol. Phys.
24
,
1013
(
1972
).
20.
L.
Verlet
and
J. J.
Weis
,
Mol. Phys.
28
,
665
(
1974
).
21.
K. E.
Gubbins
and
C. G.
Gray
,
Mol. Phys.
23
,
187
(
1972
);
K. E.
Gubbins
and
C. H.
Twu
,
Chem. Eng. Sci.
33
,
863
(
1978
);
C. G.
Gray
,
K. E.
Gubbins
, and
C. H.
Twu
,
J. Chem. Phys.
69
,
182
(
1978
).
22.
J.
Chang
and
S. I.
Sandler
,
Mol. Phys.
81
,
745
(
1994
).
23.
B. J.
Zhang
,
S.
Liang
, and
Y.
Lu
,
Fluid Phase Equilib.
180
,
183
(
2001
).
24.
R.
Rotemberg
,
J.
Dzubiella
,
J. P.
Hansen
, and
A. A.
Louis
,
Mol. Phys.
102
,
1
(
2004
).
25.
S.
Zhou
,
J. Chem. Phys.
127
,
084512
(
2007
).
26.
Y. V.
Kalyuzhnyi
,
H.
Docherty
, and
P. T.
Cummings
,
J. Chem. Phys.
133
,
044502
(
2010
).
27.
Y. V.
Kalyuzhnyi
,
H.
Docherty
, and
P. T.
Cummings
,
J. Chem. Phys.
135
,
014501
(
2011
).
28.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
34
(
1984
).
29.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
495
(
1986
).
30.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
).
31.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
32.
C.
Gögelein
,
G.
Nägele
,
R.
Tuinier
,
T.
Gibaud
,
A.
Stradner
, and
P.
Schurtenberger
,
J. Chem. Phys.
129
,
085102
(
2008
).
33.
A.
Giacometti
,
F.
Lado
,
J.
Largo
,
G.
Pastore
, and
F.
Sciortino
,
J. Chem. Phys.
131
,
174114
(
2009
).
34.
A.
Giacometti
,
F.
Lado
,
J.
Largo
,
G.
Pastore
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
174110
(
2010
).
35.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
36.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Chem. Chem. Phys.
12
,
11869
(
2010
).
37.
N.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
38.
G.
Nägele
,
The Physics of Colloidal Soft Matter
,
Lecture Notes
Vol.
14
(
Institute of Fundamental Technological Research/Polish Academy of Science
,
Warsaw, Poland
,
2004
).
39.
M. S.
Wertheim
,
Phys. Rev. Lett.
10
,
321
(
1963
).
40.
G. J.
Throop
and
R. J.
Bearman
,
J. Chem. Phys.
42
,
2408
(
1965
).
41.
W. W.
Wood
,
J. Chem. Phys.
20
,
1334
(
1952
).
42.
J. M.
Kincaid
and
J. J.
Weis
,
Mol. Phys.
34
,
931
(
1977
).
43.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
44.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
45.
F.
Romano
and
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
184501
(
2010
).
49.
A.
Giacometti
,
G.
Pastore
, and
F.
Lado
,
Mol. Phys.
107
,
555
(
2009
).
50.
D. A.
Young
and
B. J.
Adler
,
J. Chem. Phys.
73
,
2430
(
1980
).
51.
D. W.
Marr
, and
A. P.
Gast
,
J. Chem. Phys.
99
,
2024
(
1993
).
52.
J.
Serrano-Illán
and
G.
Navascués
,
Phys. Rev. E
73
,
011110
(
2006
).
53.
S. B.
Kiselev
,
J. F.
Ely
, and
J. R.
Elliott
,
Mol. Phys.
104
,
2545
(
2006
).
54.
H.
Liu
,
S.
Garde
, and
S.
Kumar
,
J. Chem. Phys.
123
,
174505
(
2005
).
55.
R.
Fantoni
,
D.
Gazzillo
,
A.
Giacometti
,
M. A.
Miller
, and
G.
Pastore
,
J. Chem. Phys.
127
,
234507
(
2007
).
56.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. E
59
,
5744
(
1999
).
57.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
New York
,
1992
).
58.
G.
Stell
,
J. C.
Rasaiah
, and
H.
Nagaran
,
Mol. Phys.
27
,
1393
(
1974
).
You do not currently have access to this content.