Orbital-free density functional theory (OFDFT), with its attractive linearly scaling computation cost and low prefactor, is one of the most powerful first principles methods for simulating large systems (∼104–106 atoms). However, approximating the electron kinetic energy with density functionals limits the accuracy and generality of OFDFT compared to Kohn-Sham density functional theory (KSDFT). In this work, we test whether the Huang-Carter (HC) kinetic energy density functional (KEDF), which contains the physics to properly describe covalently bonded semiconductor materials, can also be used to describe covalent bonds in molecules. In particular, we calculate a variety of homonuclear diatomic molecules with the HC functional within OFDFT. The OFDFT bond dissociation energy, equilibrium bond length, and vibrational frequency of these dimers are in remarkably good agreement with benchmark KSDFT results, given the lack of orbitals in the calculation. We vary the two parameters λ (controlling the reduced density gradient contribution to the nonlocal kernel) and β (the exponent of the density in the nonlocal term) present in the HC KEDF and find that the optimal λ correlates with the magnitude of the highest occupied molecular orbital - lowest unoccupied molecular orbital energy gap. Although the HC KEDF represents a significant improvement over previous KEDFs in describing covalent systems, deficiencies still exist. Despite the similar overall shape of the KSDFT and OFDFT ground state electron densities, the electron density within the bonding region is still quite different. Furthermore, OFDFT is not yet able to give reasonable description of magnetic states. The energy orderings of the triplet and singlet states of Si2 and Al family dimers are not consistent with KSDFT or experimental results and the spin polarization distributions also differ widely between the two theories.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
4.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
5.
S.
Ismail-Beigi
and
T. A.
Arias
,
Phys. Rev. Lett.
82
,
2127
(
1999
).
6.
S. Y.
Wu
and
C. S.
Jayanthi
,
Phys. Rep.
358
,
1
(
2002
).
7.
T. A.
Arias
,
Rev. Mod. Phys.
71
,
267
(
1999
).
8.
F.
Shimojo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
77
,
085103
(
2008
).
9.
Y. A.
Wang
and
E. A.
Carter
, in
Theoretical Methods in Condensed Phase Chemistry
, edited by
S. D.
Schwartz
(
Kluwer
,
Dordrecht
,
2000
), p.
117
.
10.
L.
Hung
and
E. A.
Carter
,
Chem. Phys. Lett.
475
,
163
(
2009
).
11.
I.
Shin
,
A.
Ramasubramaniam
,
C.
Huang
,
L.
Hung
, and
E. A.
Carter
,
Philos. Mag.
89
,
3195
(
2009
).
12.
Q.
Peng
,
X.
Zhang
,
L.
Hung
,
E. A.
Carter
, and
G.
Lu
,
Phys. Rev. B
78
,
054118
(
2008
).
13.
L.
Hung
and
E. A.
Carter
,
J. Phys. Chem.
115
,
6269
(
2011
).
14.
L.
Hung
and
E. A.
Carter
,
Modell. Simul. Mater. Sci. Eng.
19
,
045002
(
2011
).
15.
I.
Shin
and
E. A.
Carter
,
Modell. Simul. Mater. Sci. Eng.
20
,
015006
(
2011
).
16.
D. R.
Hamann
,
M.
Schlüter
and
C.
Chang
,
Phys. Rev. Lett.
43
,
1494
(
1979
).
17.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
18.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
19.
B.
Zhou
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. B
69
,
125109
(
2004
).
20.
S.
Watson
,
B. J.
Jesson
,
E. A.
Carter
, and
P. A.
Madden
,
Europhys. Lett.
41
,
37
(
1998
).
21.
C.
Huang
and
E. A.
Carter
,
Phys. Chem. Chem. Phys.
10
,
7109
(
2008
).
22.
B.
Zhou
and
E. A.
Carter
,
J. Chem. Phys.
122
,
184108
(
2005
).
23.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
24.
E.
Fermi
,
Rend. Accad. Naz. Lincei
6
,
602
(
1927
).
26.
27.
E. H.
Lieb
and
B.
Simon
,
Adv. Math.
23
,
22
(
1977
).
28.
C. F. v.
Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
29.
K.
Yonei
and
Y.
Tomishima
,
J. Phys. Soc. Jpn.
20
,
1051
(
1965
).
30.
M.
Levy
,
J. P.
Perdew
and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
31.
C. H.
Hodges
,
Can. J. Phys.
51
,
1428
(
1973
).
32.
D. R.
Murphy
,
Phys. Rev. A
24
,
1682
(
1981
).
33.
E.
Chacón
,
J. E.
Alvarellos
, and
P.
Tarazona
,
Phys. Rev. B
32
,
7868
(
1985
).
34.
P.
García-González
,
J. E.
Alvarellos
, and
E.
Chacón
,
Phys. Rev. B
53
,
9509
(
1996
).
35.
P.
García-González
,
J. E.
Alvarellos
, and
E.
Chacón
,
Phys. Rev. B
57
,
4857
(
1998
).
36.
L. W.
Wang
and
M. P.
Teter
,
Phys. Rev. B
45
,
13196
(
1992
).
37.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
60
,
16350
(
1999
);
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
64
(
E
),
089903
(
2001
).
38.
E.
Smargiassi
and
P. A.
Madden
,
Phys. Rev. B
51
,
117
(
1995
).
39.
K. M.
Carling
and
E. A.
Carter
,
Modell. Simul. Mater. Sci. Eng.
11
,
339
(
2003
).
40.
G.
Ho
,
M. T.
Ong
,
K. J.
Caspersen
, and
E. A.
Carter
,
Phys. Chem. Chem. Phys.
9
,
4951
(
2007
).
41.
B.
Zhou
,
V. L.
Ligneres
, and
E. A.
Carter
,
J. Chem. Phys.
122
,
044103
(
2005
).
42.
R. M.
Pick
,
M. H.
Cohen
, and
R. M.
Martin
,
Phys. Rev. B
1
,
910
(
1970
).
43.
C.
Huang
and
E. A.
Carter
,
Phys. Rev. B
81
,
045206
(
2010
).
44.
K.
Yonei
,
J. Phys. Soc. Jpn.
31
,
882
(
1971
).
45.
J. P.
Perdew
,
M.
Levy
,
G. S.
Painter
,
S.
Wei
, and
J. B.
Lagowski
,
Phys. Rev. B
37
,
838
(
1988
).
46.
S.
Iyengar
,
M.
Ernzerhof
,
S. N.
Maximoff
, and
G. E.
Scuseria
,
Phys. Rev. A
63
,
052508
(
2001
).
47.
L. A.
Constantin
and
A.
Ruzsinszky
,
Phys. Rev. B
79
,
115117
(
2009
).
48.
V.
Cocula
,
C. J.
Pickard
, and
E. A.
Carter
,
J. Chem. Phys.
123
,
214101
(
2005
).
49.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
50.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
51.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
52.
U.
von Barth
and
L.
Hedin
,
J. Phys. C
5
,
1629
(
1972
).
53.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
54.
G. L.
Oliver
and
J. P.
Perdew
,
Phys. Rev. A
20
,
397
(
1979
).
55.
H.
Jiang
and
W.
Yang
,
J. Chem. Phys.
121
,
2030
(
2004
).
56.
G.
Ho
,
V. L.
Ligneres
, and
E. A.
Carter
,
Comput. Phys. Commun.
179
,
839
(
2008
).
57.
L.
Hung
,
C.
Huang
,
I.
Shin
,
G.
Ho
,
V. L.
Ligneres
, and
E. A.
Carter
,
Comput. Phys. Commun.
181
,
2208
(
2010
).
58.
X.
Gonze
,
J. M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G. M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
,
M.
Torrent
,
A.
Roy
,
M.
Mikami
,
P.
Ghosez
,
J.-Y.
Raty
, and
D. C.
Allan
,
Comput. Mater. Sci.
25
,
478
(
2002
).
59.
Y.
Tomishima
and
K.
Yonei
,
J. Phys. Soc. Jpn.
21
,
142
(
1966
).
60.
D. S.
Ginter
,
M. L.
Ginter
, and
K. K.
Innes
,
Astrophys. J.
139
,
365
(
1964
).
61.
T. H.
Upton
,
J. Phys. Chem.
90
,
754
(
1986
).
62.
C. W.
Bauschlicher
,
H.
Partridge
,
S. R.
Langhoff
,
P. R.
Taylor
, and
S. P.
Walch
,
J. Chem. Phys.
86
,
7007
(
1987
).
63.
M. F.
Cai
,
T. P.
Dzugan
, and
V. E.
Bondybey
,
Chem. Phys. Lett.
155
,
430
(
1989
).
64.
H. J.
Himmel
and
B.
Gaertner
,
Chem.-Eur. J.
10
,
5936
(
2004
).
65.
X.
Tan
and
P. J.
Dagdigian
,
J. Phys. Chem. A
107
,
2642
(
2003
).
66.
B.
Song
and
P.
Cao
,
J. Chem. Phys.
123
,
144312
(
2005
).
68.
Y.
Zhao
,
W.
Xu
,
Q.
Li
,
Y.
Xie
, and
H. F.
Schaefer
 III
,
J. Phys. Chem. A
108
,
7448
(
2004
).
69.
G.
Balducci
,
G.
Gigli
, and
G.
Meloni
,
J. Chem. Phys.
109
,
4384
(
1998
).
70.
K.
Balasubramanian
and
J.
Li
,
J. Chem. Phys.
88
,
4979
(
1988
).
71.
K.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecule
(
Van Nostrand Reinhold
,
New York
,
1979
).
72.
F. W.
Froben
,
W.
Schulze
, and
U.
Kloss
,
Chem. Phys. Lett.
99
,
500
(
1983
).
73.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
74.
H.
Gomez
,
T. R.
Taylor
,
Y.
Zhao
, and
D. M.
Neumark
,
J. Chem. Phys.
117
,
8644
(
2002
).
75.
Z.
Gan
,
D. J.
Grant
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
125
,
124311
(
2006
).
76.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
77.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
(
1944
).
78.
Smithells Metals Reference Book
, edited by
E. A.
Brandes
and
G. B.
Brook
, 7th ed. (
Elsevier
,
New York
,
1998
).
79.
L. F.
Mattheiss
,
D. R.
Hamann
, and
W.
Weber
,
Phys. Rev. B
34
,
2190
(
1986
).
80.
L. M.
Falicov
and
P. J.
Lin
,
Phys. Rev.
141
,
562
(
1966
).
81.
A. W.
Overhauser
,
Phys. Rev. Lett.
53
,
64
(
1984
).
82.
M.
Bernasconi
,
G. L.
Chiarotti
, and
E.
Tosatti
,
Phys. Rev. B
52
,
9988
(
1995
).
83.
A.
Brown
and
S.
Rundqvist
,
Acta Crystallogr.
19
,
684
(
1965
).
84.
See supplementary material at http://dx.doi.org/10.1063/1.3685604 for the comparison of bulk properties predicted by BLPSs and NLPSs for each element, as well as plots of the newly constructed BLPSs.
85.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).

Supplementary Material

You do not currently have access to this content.