The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific “sticky” interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, “sticky” interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations.

1.
T. F. A.
De Greef
,
M. M. J.
Smulders
,
M.
Wolffs
,
A. P. H. J.
Schenning
,
R. P.
Sijbesma
, and
E. W.
Meijer
,
Chem. Rev.
109
,
5687
(
2009
).
2.
T. F. A.
De Greef
and
E. W.
Meijer
,
Nature (London)
453
,
171
(
2008
).
3.
P.
Bosenius
,
G.
Portale
,
P. H. H.
Bomans
,
H. M.
Janssen
,
A. R. A.
Palmans
, and
E. W.
Meijer
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
17888
(
2010
).
4.
F.
Dolezalek
,
Z. Phys. Chem.
64
,
727
(
1908
).
5.
A. V.
Tobolsky
and
A.
Eisenberg
,
J. Am. Chem. Soc.
81
,
780
(
1959
);
A. V.
Tobolsky
and
A.
Eisenberg
,
J. Am. Chem. Soc.
81
,
2302
(
1959
);
A. V.
Tobolsky
and
A.
Eisenberg
,
J. Am. Chem. Soc.
82
,
289
(
1959
);
A. V.
Tobolsky
and
A.
Eisenberg
,
J. Colloid. Sci.
17
,
49
(
1962
).
6.
A. V.
Tobolsky
,
J. Polym. Sci.
25
,
220
(
1957
).
7.
A. V.
Tobolsky
,
A.
Rembaum
, and
A.
Eisenberg
,
J. Polym. Sci.
45
,
345
(
1960
).
8.
J. C.
Wheeler
,
S. J.
Kennedy
, and
P.
Pfeuty
,
Phys. Rev. Lett.
45
,
1748
(
1980
).
9.
J. C.
Wheeler
and
P.
Pfeuty
,
Phys. Rev. A
24
,
1050
(
1981
);
J. C.
Wheeler
and
P.
Pfeuty
,
Phys. Rev. Lett.
46
,
1409
(
1981
).
10.
S. J.
Kennedy
and
J. C.
Wheeler
,
J. Chem. Phys.
78
,
953
(
1983
).
11.
S. J.
Kennedy
and
J. C.
Wheeler
,
J. Chem. Phys.
78
,
1523
(
1983
).
12.
J. C.
Wheeler
,
Phys Rev. Lett.
53
,
174
(
1984
).
13.
J. C.
Wheeler
,
J. Chem. Phys.
81
,
3635
(
1984
).
14.
S. C.
Greer
,
J. Phys. Chem. B
102
,
5413
(
1998
).
16.
K. S.
Pendyala
,
S. C.
Greer
, and
D. T.
Jacobs
,
J. Chem. Phys.
115
,
9995
(
2001
).
17.
K. S.
Pendyala
,
X. Y.
Gu
,
K. P.
Andrews
,
K.
Gruner
,
D. T.
Jacobs
, and
S. C.
Greer
,
J. Chem. Phys.
114
,
4312
(
2001
).
18.
J. N. A.
Matthews
,
P. B.
Yim
,
D. T.
Jacobs
,
J. G.
Forbes
,
N. D.
Peters
, and
S. C.
Greer
,
J. Chem. Phys.
123
,
074904
(
2005
).
19.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
111
,
7116
(
1999
).
20.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
112
,
1002
(
2000
).
21.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
113
,
434
(
2000
).
22.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
119
,
12645
(
2003
).
23.
F.
Oosawa
and
S.
Asakura
,
Thermodynamics of Polymerization of Proteins
(
Academic
,
New York
,
1975
) and references therein.
24.
S. B.
Zimmerman
and
A. P.
Minton
,
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
(
1993
).
25.
26.
A. P.
Minton
,
J. Biol. Chem.
276
,
10577
(
2001
).
27.
G.
Rivas
,
J. A.
Fernandez
, and
A. P.
Minton
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
3150
(
2001
);
[PubMed]
G.
Rivas
,
J. A.
Fernandez
, and
A. P.
Minton
,
Biochemistry
38
,
9379
(
1999
).
[PubMed]
28.
M.
Jiao
,
H.-T.
Li
,
J.
Chen
,
A. P.
Minton
, and
Y.
Liang
,
Biophys. J.
99
,
914
(
2010
).
29.
F.
Sciortino
,
E.
Bianchi
,
J. F.
Douglas
, and
P.
Tartaglia
,
J. Chem. Phys.
126
,
194903
(
2007
).
30.
E.
Bianchi
,
P.
Tartaglia
,
E.
La Nave
, and
F.
Sciortino
,
J. Phys. Chem. B
111
,
11765
(
2007
).
31.
F.
Sciortino
,
C.
De Michele
, and
J. F.
Douglas
,
J. Phys.: Condens. Matter
20
,
155101
(
2008
).
32.
P.
Tartaglia
and
F.
Sciortino
,
J. Phys.: Condens. Matter
22
,
104108
(
2010
).
33.
G.
Doppelbauer
,
E.
Bianchi
, and
G.
Kahl
,
J. Phys.: Condens. Matter
22
,
104105
(
2010
).
34.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
131
,
014504
(
2009
).
35.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
,
Soft Matter
6
,
4229
(
2010
).
36.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
);
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
);
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
);
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
).
37.
I. G.
Economou
and
M. D.
Donohue
,
AIChE J.
37
,
1875
(
1991
).
38.
C.
Panyioutou
and
I. C.
Sanchez
,
J. Phys. Chem.
95
,
10090
(
1991
).
39.
R. A.
Heidemann
and
J. M.
Prausnitz
,
Proc. Natl. Acad. Sci. U.S.A.
73
,
1773
(
1976
).
40.
G. D.
Ikonomou
and
M. D.
Donohue
,
AIChE J.
32
,
1716
(
1986
).
41.
G. D.
Ikonomou
and
M. D.
Donohue
,
Fluid Phase Equilib.
39
,
129
(
1988
).
42.
A.
Anderko
,
Fluid Phase Equilib.
45
,
39
(
1989
).
43.
A.
Anderko
,
Fluid Phase Equilib.
50
,
21
(
1989
).
44.
I. G.
Economou
,
G. D.
Ikonomou
,
P.
Vimalchand
, and
M. D.
Donohue
,
AIChE J.
36
,
1851
(
1990
).
45.
J. R.
Elliot
 Jr.
,
S. J.
Suresh
, and
M. D.
Donohue
,
Ind. Eng. Chem. Res.
29
,
1476
(
1990
).
46.
E. A.
Guggenheim
,
Mixtures
(
Clarendon
,
Oxford
,
1952
).
47.
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
51
,
253
(
1984
).
48.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Fluid Phase Equilib.
52
,
31
(
1989
).
49.
S. H.
Huang
and
M.
Radosz
,
Ind. Eng. Chem. Res.
30
,
1994
(
1991
).
50.
A.
Gil
-Villegas,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Buress
,
J. Chem. Phys.
106
,
4168
(
1996
).
51.
I. G.
Economou
,
Ind. Eng. Chem. Res.
41
,
953
(
2002
).
52.
Y.-
X.
Yu
and
J.
Wu
,
J. Chem. Phys.
116
,
7094
(
2002
).
53.
E. K.
Karakatsani
and
I. G.
Economou
,
J. Phys. Chem. B
110
,
9252
(
2006
).
54.
K.
Rah
,
K. F.
Freed
,
J.
Dudowicz
, and
J. F.
Douglas
,
J. Chem. Phys.
124
,
144906
(
2006
).
55.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
,
J. Chem. Phys.
128
,
224901
(
2008
).
56.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
,
J. Chem. Phys.
127
,
224901
(
2007
).
57.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Phys. Chem. B
113
,
3920
(
2009
).
58.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
130
,
084903
(
2009
).
59.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Phys. Chem. B
112
,
16193
(
2008
).
60.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
130
,
224906
(
2009
).
61.
J.
Dudowicz
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
130
,
164905
(
2009
).
62.
E. B.
Stukalin
and
K. F.
Freed
,
J. Chem. Phys.
125
,
184905
(
2006
).
63.
E. B.
Stukalin
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
129
,
094901
(
2008
).
64.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
,
J. Chem. Phys.
125
,
144907
(
2006
).
65.
E. B.
Stukalin
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
132
,
084504
(
2010
).
66.
M. N.
Artyomov
and
K. F.
Freed
,
J. Chem. Phys.
126
,
024908
(
2007
).
67.
J. F.
Douglas
,
J.
Dudowicz
, and
K. F.
Freed
,
Phys. Rev. Lett.
103
,
135701
(
2009
).
68.
P. S.
Niranjan
,
J. G.
Forbes
,
S. C.
Greer
,
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
114
,
10573
(
2001
);
P. S.
Niranjan
,
P. B.
Yim
,
J. G.
Forbes
,
S. C.
Greer
,
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
119
,
4070
(
2003
).
69.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
Phys. Rev. Lett.
92
,
045502
(
2004
).
70.
M. N.
Artyomov
and
K. F.
Freed
,
J. Chem. Phys.
123
,
194906
(
2005
).
71.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
24
,
5076
(
1991
).
72.
D.
Baker
,
H. S.
Chan
, and
K. A.
Dill
,
J. Phys. Chem.
98
,
9951
(
1993
).
73.
An alternative derivation of the LCT theory (in coordinate space) has been made in an elegant way by Baker, Chan, and Dill (Ref. 72).
74.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
Phys. Rev. Lett.
88
,
095503
(
2002
);
[PubMed]
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
116
,
9983
(
2002
).
75.
J.
Dudowicz
and
K.
Freed
,
Macromolecules
26
,
213
(
1993
);
J.
Dudowicz
and
K.
Freed
,
Macromolecules
33
,
5592
(
2000
).
76.
T. P.
Russell
,
T. E.
Karis
,
Y.
Gallot
, and
A. M.
Mayes
,
Nature (London)
368
,
729
(
1994
).
77.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
33
,
9777
(
2000
).
78.
H.
Hu
,
C.
Chong
,
A.
He
,
C.
Zhang
,
G.
Fan
,
J.-Y.
Dong
, and
C. C.
Han
,
Macromol. Rapd. Commun.
26
,
973
(
2005
).
79.
J.
Dudowicz
,
M. S.
Freed
, and
K. F.
Freed
,
Macromolecules
24
,
5096
(
1991
);
J.
Dudowicz
and
K.
Freed
,
Macromolecules
28
,
6625
(
1995
).
80.
S.
Janssen
,
D.
Schwahn
K.
Mortensen
, and
T.
Springer
,
Macromolecules
26
,
5587
(
2003
);
B.
Hammouda
and
B. J.
Bauer
,
Macromolecules
28
,
4505
(
1995
).
81.
K. F.
Freed
and
J.
Dudowicz
,
Adv. Polym. Sci.
183
,
63
(
2005
).
82.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
Adv. Chem. Phys.
137
,
125
(
2008
).
83.
M. M.
Coleman
,
J.
Graf
, and
P. C.
Painter
,
Specific Interactions and the Miscibility of Polymer Blends
(
Technomic
,
Lancaster, PA
,
1991
).
84.
J.
Kim
,
S. S.
Kim
,
K. H.
Kim
,
Y. H.
Jin
,
S. M.
Hong
,
S. S.
Hwang
,
B.-G.
Cho
,
D. Y.
Shin
, and
S. S.
Im
,
Polymer
45
,
3527
(
2004
).
85.
R. D.
Athey
 Jr.
,
Prog. Org. Coat.
7
,
289
(
1979
).
86.
E. J.
Goethals
, in
Telechelic Polymers: Synthesis and Applications
, editor
E. J.
Goethals
(
CRC
,
Boca Raton, FL
,
1989
), Chap. I, p.
1
.
87.
M.
Anthamatten
,
J. Polym. Sci., Part B: Polym. Phys.
45
,
3285
(
2007
).
88.
R.
Elliot
and
G. H.
Fredrickson
,
J. Chem. Phys.
131
,
144906
(
2009
).
89.
S. M.
Loverde
,
A. V.
Ermoshkin
, and
M.
Olvera de la Cruz
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
796
(
2005
).
90.
M. J.
Cass
,
D. M.
Heyes
,
R.-L.
Blanchard
, and
R. J.
English
,
J. Phys.: Condens. Matter
20
,
335103
(
2008
).
91.
F. L.
Verso
,
A. Z.
Panagiotopoulos
, and
C. N.
Likos
,
Phys. Rev. E
79
,
010401
(
2009
).
92.
F. L.
Verso
and
C. N.
Likos
,
Polymer
49
,
1425
(
2008
).
93.
H.
Jacobson
and
W. H.
Stockmayer
,
J. Chem. Phys.
18
,
1600
(
1950
).
94.
All our previous papers treat the microscopic energies εij for attractive interactions as positive quantities, and the exchange energy ε is consequently defined as ε = ε11 + ε22 − 2ε12. Because the microscopic sticky interaction energy εs is taken here as negative, internal consistency requires treating the energies εij on the same level, i.e., as negative for attractive interactions, which, in turn, produces the redefinition of ε as ε = 2ε12 − ε11 − ε22.
95.
W. G.
Madden
,
J. Chem. Phys.
92
,
2055
(
1990
).
96.
K. F.
Freed
and
M. G.
Bawendi
,
J. Phys. Chem.
93
,
2194
(
1989
).
97.
A. M.
Nemirovsky
,
M. G.
Bawendi
, and
K. F.
Freed
,
J. Chem. Phys.
87
,
7272
(
1987
).
98.
The original calculations (Refs. 71 and 97) of the connectivity constant DB are performed in Fourier space by introducing the Fourier transform of Xα, m, but an alternative real space method (Refs. 72 and 73) is available for direct summations of the products of Kronecker deltas over
$\lbrace \textbf {r}_{i}\rbrace$
{ri}
.
99.
Inclusion of interactions between two united atom groups that are also linked by a common chemical bond ensures that the LCT free energy of a binary mixture depends (Ref. 95) only on the single van der Waals exchange interaction energy when the system is incompress-ible.
100.
The indices κ, λ, and k in all expressions are summarized in Tables I–III of Ref. 71 and reduce to unity for one-component systems. Consequently, we obtain the simplifications N(i, κ) ≡ N(i), N(i, j; κ) ≡ N(i, j), N(i, λ) ≡ N(i), and N(i, j; λ) ≡ N(i, i). In addition, the relations (Ref. 105) 2!N(1, 1) = N(1)2MN(1) − 2N(2), N(1, 2) = N(1)N(2)M − 2N(2) − 2N(3), and 2!N(2, 2) = N(2)2MN(2) − 2N(3) − 2N(4), derived in Ref. 105, are used in Eqs. (6)–(8).
101.
J.
Dudowicz
,
K. F.
Freed
, and
W. G.
Madden
,
Macromolecules
23
,
4803
(
1990
).
102.
K. F.
Freed
,
J. Chem. Phys.
130
,
061103
(
2009
).
103.
M. M.
Coleman
and
P. C.
Painter
,
Prog. Polym Sci.
20
,
1
(
1995
).
104.
All individual diagrams in the text are denoted by bold font.
105.
A. M.
Nemirovsky
,
J.
Dudowicz
, and
K. F.
Freed
,
Phys. Rev. A
45
,
7111
(
1992
).
You do not currently have access to this content.