The three step auf bau of a triangular polyaromatic protrusion attached to a larger parent hexagonal shaped graphene nanodot (GND) is described and the dichotomy between intrinsic protrusion localized magnetism and parent extended zigzag edge magnetism is explored using ab initio density functional theory calculations of spin and charge distributions and geometry. Comparison of a three ring with a ten-ring protrusion-GND establishes a pattern for the magnetization of GNDs with larger protrusions and different morphology. The magnetism of the isolated protrusions arises from the mismatch in numbers of sublattice (alternant hydrocarbon) carbon atoms. In the parent, the sublattices are equivalent providing a singlet ground state and the magnetization appears only on long zigzag edges due to exchange interactions operating in a regime of reduced coulombic interactions. We demonstrate that a small protrusion can quench the magnetism of the edge to which it is attached. Concomitantly, the adjacent edges exhibit a small magnetic enhancement, while the remote edges are unperturbed. With size the protrusion can dominate its edge and exert control over the magnetization of other edges. Different multiplicities of the parent moiety were not found. These calculations provide guidance in understanding how the magnetism changes with system shape and in designing nanodots with a specific magnetization.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
2.
M. R.
Philpott
,
F.
Cimpoesu
, and
Y.
Kawazoe
,
Mater. Trans., JIM
49
,
2448
(
2008
).
3.
M. R.
Philpott
and
Y.
Kawazoe
,
Phys. Rev. B
79
,
233303
(
2009
).
4.
J.
Fernandez-Rossier
and
J. J.
Palacios
,
Phys. Rev. Lett.
99
,
177204
(
2007
).
5.
W. L.
Wang
,
S.
Meng
, and
E.
Kaxiras
,
Nano Lett.
8
,
241
(
2008
);
[PubMed]
W. L.
Wang
,
S.
Meng
, and
E.
Kaxiras
,
Phys. Rev. Lett.
102
,
157201
(
2009
).
[PubMed]
6.
M. R.
Philpott
and
Y.
Kawazoe
,
J. Chem. Phys.
131
,
214706
(
2009
).
7.
M. R.
Philpott
and
Y.
Kawazoe
,
J. Chem. Phys.
134
,
124706
(
2011
).
9.
L.
Salem
,
The Molecular Orbital Theory of Conjugated Systems
(
Benjamin
,
New York
,
1966
).
10.
M.
Bendikov
,
H. M.
Duong
,
K.
Starkey
,
K. N.
Houk
,
E. A.
Carter
, and
F.
Wudl
,
J. Am. Chem. Soc. Commun.
126
,
7416
(
2004
).
11.
D. E.
Jiang
and
S.
Dai
,
J. Phys. Chem. A
112
,
332
(
2008
).
12.
J.
Hachmann
,
J. J.
Dorando
,
M.
Aviles
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
13.
D.
Casanova
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
11
,
9779
(
2009
).
14.
O.
Hod
,
V.
Barone
,
J. E.
Peralta
, and
G. E.
Scuseria
,
Nano Lett.
7
,
2295
(
2007
).
15.
A.
Ranjbar
,
M. S.
Bahramy
,
M.
Khazei
,
H.
Misuseki
, and
Y.
Kawazoe
,
Phys. Rev. B
82
,
165446
(
2010
).
16.
D. W.
Boukhvalov
and
M. I.
Katsnelson
J. Phys. Condens. Matter
21
,
344205
(
2009
).
17.
M.
Maruyama
and
K.
Kusakabe
,
J. Phys. Soc. Jpn.
73
,
656
(
2004
).
18.
D. J.
Klein
and
L.
Bytautas
,
J. Phys. Chem. A
103
,
5196
(
1999
).
19.
M. R.
Philpott Prabhat
, and
Y.
Kawazoe
,
J. Chem. Phys.
135
,
084707
(
2011
).
20.
H.
Zheng
and
W.
Dudley
,
Phys. Rev. B
78
,
045421
(
2008
).
21.
J. A.
Fürst
,
J. G.
Pedersen
,
C.
Flindt
,
N. A.
Mortensen
,
M.
Brandbyge
,
T. G.
Pedersen
, and
A.-P.
Jauho
,
New J. Phys.
11
,
095020
(
2009
).
22.
D.-E.
Jiang
,
B. G.
Sumpter
, and
S.
Dai
,
J. Phys. Chem. B
110
,
23628
(
2006
).
23.
E.
Bekyarova
,
M. E.
Itkis
,
P.
Ramesh
,
C.
Berger
,
M.
Sprinkle
,
W. A.
de Heer
, and
R. C.
Haddon
,
J. Am. Chem. Soc.
B 131
,
1336
(
2009
).
24.
E.
Clar
,
Polycyclic Hydrocarbons
(
Academic
,
London
,
1964
), Vols. 1 and 2;
The Aromatic Sextet
(
Wiley
,
New York
,
1972
).
25.
H. C.
Longuet-Higgins
,
J. Chem. Phys.
86
,
265
(
1950
).
26.
N.
Mataga
,
Theor. Chim. Acta
10
,
372
(
1968
).
27.
A. A.
Ovchinnikov
,
Theor. Chim. Acta (Berlin)
47
,
297
(
1978
).
28.
M. R.
Philpott
,
F.
Cimpoesu
, and
Y.
Kawazoe
,
Chem. Phys.
354
,
1
(
2008
);
M. R.
Philpott
,
S.
Vukovic
,
Y.
Kawazoe
, and
W. A.
Lester
 Jr.
,
J. Chem. Phys.
133
,
044708
(
2010
).
[PubMed]
29.
See supplementary material at http://dx.doi.org/10.1063/1.3684900 for the additional information referred to in the text.
30.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
588
(
1993
).
31.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
32.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
34.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
35.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
36.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
37.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
38.
I. de P. R.
Moreira
,
R.
Costa
,
M.
Filatov
, and
F.
Illas
,
J. Chem. Theory Comput.
3
,
764
(
2007
).
39.
F.
Illas
,
I. de P. R.
Moreira
,
J. M.
Bofil
, and
M.
Filatov
,
Theo. Chem. Acc.
116
,
587
(
2006
).
40.
See https://wci.llnl.gov/codes/visit/ for VisIt Visualization Tool.
41.
See http://vaspview.sourceforge.net for VaspView data viewer.
42.
D. M.
Bishop
,
Group Theory and Chemistry
(
Dover
,
New York
,
1993
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
45.
R.
Whitesides
,
A. C.
Kollias
,
D.
Domin
,
W. A.
Lester
 Jr.
and
M. Y.
Frenklach
,
Proc. Combust. Inst. B
31
,
539
(
2007
).

Supplementary Material

You do not currently have access to this content.