Spontaneous and near-infrared/infrared (NIR/IR)-induced interconversions between two amino-hydroxy conformers of monomeric cytosine have been investigated for the compound isolated in a low-temperature argon matrix. Combined use of a laser source (which provides narrowband NIR radiation) and a broadband NIR/IR source of excitation light allowed a detailed investigation of mutual conversions of the two conformers in question. The experiments carried out within the current work demonstrated that upon broadband NIR/IR irradiation (with the IR source of FTIR spectrometer) the population ratio of the two amino-hydroxy conformers changes towards a ratio corresponding to a photostationary state. Evolution of the conformer population ratio towards the photostationary ratio occurred independent of the initial ratio of conformers, which could be prepared by a population shift (in favor of one of the forms) induced by narrowband NIR excitation. Moreover, spontaneous tunneling conversion of the higher-energy conformer into a lower-energy form was observed for cytosine isolated in a low-temperature argon matrix kept in the dark. This process is slow and occurs on a time scale of days. The tunneling process, studied for matrix-isolated cytosine, clearly follows a dispersive type of kinetics rather than the classical monoexponential kinetics.

1.
I.
Reva
,
A. J.
Lopes Jesus
,
M. T. S.
Rosado
,
R.
Fausto
,
M. E.
Eusébio
, and
J. S.
Redinha
,
Phys. Chem. Chem. Phys.
8
,
5339
(
2006
).
2.
I. D.
Reva
,
S.
Jarmelo
,
L.
Lapinski
, and
R.
Fausto
,
J. Phys. Chem. A
108
,
6982
(
2004
).
3.
H.
Hollenstein
,
T.-K.
Ha
, and
H. H.
Günthard
,
J. Mol. Struct.
146
,
289
(
1986
).
4.
H.
Frei
,
T.-K.
Ha
,
R.
Meyer
, and
H. H.
Günthard
,
Chem. Phys.
25
,
271
(
1977
).
5.
M.
Pettersson
,
J.
Lundell
,
L.
Khriachtchev
, and
M.
Räsänen
,
J. Am. Chem. Soc.
119
,
11715
(
1997
).
6.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
R.
Fausto
, and
M.
Räsänen
,
J. Am. Chem. Soc.
125
,
16188
(
2003
).
7.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
R.
Fausto
, and
M.
Räsänen
,
J. Phys. Chem. A
109
,
3617
(
2005
).
8.
A.
Sharma
,
I.
Reva
, and
R.
Fausto
,
J. Am. Chem. Soc.
131
,
8752
(
2009
).
9.
M.
Pettersson
,
E. M. S.
Maçôas
,
L.
Khriachtchev
,
R.
Fausto
, and
M.
Räsänen
,
J. Am. Chem. Soc.
125
,
4058
(
2003
).
10.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
J.
Lundell
,
R.
Fausto
, and
M.
Räsänen
,
Vib. Spectrosc.
34
,
73
(
2004
).
11.
E. M. S.
Maçôas
,
L.
Khriachtchev
,
M.
Pettersson
,
R.
Fausto
, and
M.
Räsänen
,
J. Chem. Phys.
121
,
1331
(
2004
).
12.
M.
Pettersson
,
E. M. S.
Maçôas
,
L.
Khriachtchev
,
J.
Lundell
,
R.
Fausto
, and
M.
Räsänen
,
J. Chem. Phys.
117
,
9095
(
2002
).
13.
K.
Marushkevich
,
L.
Khriachtchev
, and
M.
Räsänen
,
J. Chem. Phys.
126
,
241102
(
2007
).
14.
S.
Lopes
,
A. V.
Domanskaya
,
R.
Fausto
,
M.
Räsänen
, and
L.
Khriachtchev
,
J. Chem. Phys.
133
,
144507
(
2010
).
15.
P. R.
Schreiner
,
H. P.
Reisenauer
,
D.
Ley
,
D.
Gerbig
,
C.-H.
Wu
, and
W. D.
Allen
,
Science
332
(
6035
),
1300
(
2011
).
16.
P. R.
Schreiner
,
H. P.
Reisenauer
,
F. C.
Pickard
 IV
,
A. C.
Simmonett
,
W. D.
Allen
,
E.
Mátyus
, and
A. G.
Császár
,
Nature (London)
453
,
906
(
2008
).
17.
L.
Lapinski
,
I.
Reva
,
M. J.
Nowak
, and
R.
Fausto
,
Phys. Chem. Chem. Phys.
13
,
9676
(
2011
).
18.
L.
Lapinski
,
M. J.
Nowak
,
I.
Reva
,
H.
Rostkowska
, and
R.
Fausto
,
Phys. Chem. Chem. Phys.
12
,
9615
(
2010
).
19.
G.
Bazsó
,
G.
Tarczay
,
G.
Fogarasi
, and
P. G.
Szalay
,
Phys. Chem. Chem. Phys.
13
,
6799
(
2011
).
20.
O.
Kostko
,
K.
Bravaya
,
A.
Krylov
, and
M.
Ahmed
,
Phys. Chem. Chem. Phys.
12
,
2860
(
2010
).
21.
Z.
Yang
and
M. T.
Rodgers
,
Phys. Chem. Chem. Phys.
6
,
2749
(
2004
).
22.
N.
Russo
,
M.
Toscano
, and
A.
Grand
,
J. Am. Chem. Soc.
123
,
10272
(
2001
).
23.
G.
Fogarasi
,
J. Phys. Chem. A
106
,
1381
(
2002
).
24.
M.
Piacenza
and
S.
Grimme
,
J. Comput. Chem
25
,
83
(
2003
).
25.
S. A.
Trygubenko
,
T. V.
Bogdan
,
M.
Rueda
,
M.
Orozco
,
F. J.
Luque
,
J.
Šponer
,
P.
Slaviček
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
4
,
4192
(
2002
).
26.
R.
Kobayashi
,
J. Phys. Chem. A
102
,
10813
(
1998
).
27.
J. K.
Wolken
,
Ch.
Yao
,
F.
Tureček
,
M. J.
Polce
, and
Ch.
Wesdemiotis
,
Int. J. Mass Spectrosc.
267
,
30
(
2007
).
28.
M.
Szczesniak
,
K.
Szczepaniak
,
J. S.
Kwiatkowski
,
K.
KuBulat
, and
W. B.
Person
,
J. Am. Chem. Soc.
110
,
8319
(
1988
).
29.
M. J.
Nowak
,
L.
Lapinski
, and
J.
Fulara
,
Spectrochim. Acta Part A
45
,
229
(
1989
).
30.
A.
Plonka
,
Dispersive Kinetics
(
Kluwer Academic
,
Dordrecht, The Netherlands
,
2001
).
31.
W.
Siebrand
and
T.
Wildman
,
Acc. Chem. Res.
19
,
238
(
1986
).
32.
P. J.
Skrdla
,
J. Phys. Chem. A
111
,
11809
(
2007
).
33.
N.
Akai
,
S.
Kudoh
,
M.
Takayanagi
, and
M.
Nakata
,
Chem. Phys. Lett.
356
,
133
(
2002
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.3683217 for the characteristics of the NIR/IR filters used in the study (Fig. S1) and description of the method of determination of the population ratio of AH1 and AH2 conformers on the basis of the intensity ratio of the IR bands.

Supplementary Material

You do not currently have access to this content.