Understanding the unique properties of water still represents a significant challenge for theory and experiment. Computer simulations by molecular dynamics require a reliable description of the atomic interactions, and in recent decades countless water potentials have been reported in the literature. Still, most of these potentials contain significant approximations, for instance a frozen internal structure of the individual water monomers. Artificial neural networks (NNs) offer a promising way for the construction of very accurate potential-energy surfaces taking all degrees of freedom explicitly into account. These potentials are based on electronic structure calculations for representative configurations, which are then interpolated to a continuous energy surface that can be evaluated many orders of magnitude faster. We present a full-dimensional NN potential for the water dimer as a first step towards the construction of a NN potential for liquid water. This many-body potential is based on environment-dependent atomic energy contributions, and long-range electrostatic interactions are incorporated employing environment-dependent atomic charges. We show that the potential and derived properties like vibrational frequencies are in excellent agreement with the underlying reference density-functional theory calculations.

1.
F.
Franks
, in
Water: A Matrix of Life
, 2nd ed. (
Royal Society of Chemistry
,
Cambridge
,
2000
).
2.
M. P.
Allen
and
D. J.
Tildesley
, in
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
4.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
5.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
6.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
7.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
8.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
9.
G. C.
Schatz
,
Rev. Mod. Phys.
61
,
669
(
1989
).
10.
T.
Hollebeek
,
T. S.
Ho
, and
H.
Rabitz
,
Annu. Rev. Phys. Chem.
50
,
537
(
1999
).
11.
O.
Engkvist
,
P. O.
Astrand
, and
G.
Karlstrom
,
Chem. Rev.
100
,
4087
(
2000
).
12.
K.
Szalewicz
,
C.
Leforestier
, and
A.
van der Avoird
,
Chem. Phys. Lett.
482
,
1
(
2009
).
13.
Y. M.
Wang
and
J. M.
Bowman
,
Chem. Phys. Lett.
491
,
1
(
2010
).
14.
J. C.
Fogarty
,
H. M.
Aktulga
,
A. Y.
Grama
,
A. C. T.
van Duin
, and
S. A.
Pandit
,
J. Chem. Phys.
132
,
174704
(
2010
).
15.
J.
Hertz
,
A.
Krogh
, and
R. G.
Palmer
,
Introduction to the Theory of Neural Computation
(
Addison-Wesley
,
Reading
,
1996
).
16.
C. M.
Bishop
,
Neural Networks for Pattern Recognition
(
Oxford University Press
,
Oxford
,
1995
).
17.
C. M.
Handley
and
P. L. A.
Popelier
,
J. Phys. Chem. A
114
,
3371
(
2010
).
18.
J.
Behler
,
Chem. Modelling
7
,
1
(
2010
).
19.
J.
Behler
,
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
21.
F. V.
Prudente
,
P. H.
Acioli
, and
J. J. S.
Neto
,
J. Chem. Phys.
109
,
8801
(
1998
).
22.
D. F. R.
Brown
,
M. N.
Gibbs
, and
D. C.
Clary
,
J. Chem. Phys.
105
,
7597
(
1996
).
23.
L. M.
Raff
,
M.
Malshe
,
M.
Hagan
,
D. I.
Doughan
,
M. G.
Rockley
, and
R.
Komanduri
,
J. Chem. Phys.
122
,
084104
(
2005
).
24.
S.
Manzhos
and
T.
Carrington
 Jr.
,
J. Chem. Phys.
125
,
194105
(
2006
).
25.
S.
Manzhos
and
T.
Carrington
 Jr.
,
J. Chem. Phys.
129
,
224104
(
2008
).
26.
A.
Pukrittayakamee
,
M.
Malshe
,
M.
Hagan
,
L. M.
Raff
,
R.
Narulkar
,
S.
Bukkapatnum
, and
R.
Komanduri
,
J. Chem. Phys.
130
,
134101
(
2009
).
27.
M.
Malshe
,
L. M.
Raff
,
M. G.
Rockley
,
M.
Hagan
,
P. M.
Agrawal
, and
R.
Komanduri
,
J. Chem. Phys.
127
,
134105
(
2007
).
28.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
,
J. Chem. Phys.
103
,
4129
(
1995
).
29.
S.
Lorenz
,
A.
Groß
, and
M.
Scheffler
,
Chem. Phys. Lett.
395
,
210
(
2004
).
30.
S.
Lorenz
,
M.
Scheffler
, and
A.
Groß
,
Phys. Rev. B
73
,
115431
(
2006
).
31.
J.
Behler
,
B.
Delley
,
S.
Lorenz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
32.
J.
Behler
,
S.
Lorenz
, and
K.
Reuter
,
J. Chem. Phys.
127
,
014705
(
2007
).
33.
C.
Carbogno
,
J.
Behler
,
A.
Groß
, and
K.
Reuter
,
Phys. Rev. Lett.
101
,
096104
(
2008
).
34.
C.
Carbogno
,
J.
Behler
,
K.
Reuter
, and
A.
Groß
,
Phys. Rev. B
81
,
035410
(
2010
).
35.
J.
Behler
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
77
,
115421
(
2008
).
36.
D. A. R. S.
Latino
,
R. P. S.
Fartaria
,
F. F. M.
Freitas
,
J.
Aires-De-Sousa
, and
F. M. S. S.
Fernandes
,
J. Electroanal. Chem.
624
,
109
(
2008
).
37.
J.
Ludwig
and
D. G.
Vlachos
,
J. Chem. Phys.
127
,
154716
(
2007
).
38.
S.
Manzhos
,
X. G.
Wang
,
R.
Dawes
, and
T.
Carrington
 Jr.
,
J. Phys. Chem. A
110
,
5295
(
2006
).
39.
H.
Gassner
,
M.
Probst
,
A.
Lauenstein
, and
K.
Hermansson
,
J. Phys. Chem. A
102
,
4596
(
1998
).
40.
K. T.
No
,
B. H.
Chang
,
S. Y.
Kim
,
M. S.
Jhon
, and
H. A.
Scheraga
,
Chem. Phys. Lett.
271
,
152
(
1997
).
41.
K. H.
Cho
,
K. T.
No
, and
H. A.
Scheraga
,
J. Mol. Struct.
641
,
77
(
2002
).
42.
C. M.
Handley
and
P. L.A.
Popelier
,
J. Chem. Theory Comput.
5
,
1474
(
2009
).
43.
C. M.
Handley
,
G. I.
Hawe
,
D. B.
Kell
, and
P. L. A.
Popelier
,
Phys. Chem. Chem. Phys.
11
,
6365
(
2009
).
44.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
45.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
,
Phys. Rev. B
83
,
153101
(
2011
).
46.
A.
Bholoa
,
S. D.
Kenny
, and
R.
Smith
,
Nucl. Instrum. Methods Phys. Res. B
255
,
1
(
2007
).
47.
E.
Sanville
,
A.
Bholoa
,
R.
Smith
, and
S. D.
Kenny
,
J. Phys.: Condens. Matter
20
,
285219
(
2008
).
48.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
49.
J. B.
Witkoskie
and
D. J.
Doren
,
J. Chem. Theory Comput.
1
,
14
(
2005
).
50.
H. M.
Le
and
L. M.
Raff
,
J. Phys. Chem. A
114
,
45
(
2010
).
51.
J.
Behler
,
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
185501
(
2008
).
52.
J.
Behler
,
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
,
Phys. Status Solidi B
245
,
2618
(
2008
).
53.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. B
81
,
184107
(
2010
).
54.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. B
81
,
100103
(
2010
).
55.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Nature Mater.
10
,
693
(
2011
).
56.
N.
Artrith
and
J.
Behler
,
Phys. Rev. B
85
,
045439
(
2012
).
57.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
58.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
59.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
60.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
61.
J.
Behler
,
RuNNer - A Neural Network Code for High-Dimensional Potential-Energy Surfaces
, Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum.
62.
D. H.
Nguyen
and
B.
Widrow
,
IEEE Control Syst. Mag.
3
,
18
(
1990
).
63.
J.
Ischtwan
and
M. A.
Collins
,
J. Chem. Phys.
100
,
8080
(
1994
).
64.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
128
,
094313
(
2008
).
65.
E. M.
Mas
,
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
113
,
6687
(
2000
).
66.
M.
Torheyden
and
G.
Jansen
,
Mol. Phys.
104
,
2101
(
2006
).
67.
J. W.
Ponder
, TINKER, Software Tools for Molecular Design version 5.0, Washington University School of Medicine, Saint Louis, MO,
2009
, http://dasher.wustl.edu/tinker.
68.
B. J.
Smith
,
D. J.
Swanton
,
J. A.
Pople
,
H. F.
Schaefer
, and
L.
Radom
,
J. Chem. Phys.
92
,
1240
(
1990
).
69.
J. A.
Anderson
and
G. S.
Tschumper
,
J. Phys. Chem. A
110
,
7268
(
2006
).
71.
D. C.
Liu
and
J.
Nocedal
,
Math. Program.
45
,
503
(
1989
).
You do not currently have access to this content.