The solvation model proposed by Fattebert and Gygi [J. Comput. Chem.23, 662 (2002) https://doi.org/10.1002/jcc.10069] and Scherlis et al. [J. Chem. Phys.124, 074103 (2006) https://doi.org/10.1063/1.2168456] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multigrid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005) https://doi.org/10.1103/PhysRevLett.94.145501] of the solute. The resulting self-consistent continuum solvation model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the polarizable continuum model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond-forming compounds.

1.
J. L.
Fattebert
and
F.
Gygi
,
J. Comput. Chem.
23
,
662
(
2002
).
2.
D. A.
Scherlis
,
J. L.
Fattebert
,
F.
Gygi
,
M.
Cococcioni
, and
N.
Marzari
,
J. Chem. Phys.
124
,
074103
(
2006
).
3.
M.
Cococcioni
,
F.
Mauri
,
G.
Ceder
, and
N.
Marzari
,
Phys. Rev. Lett.
94
,
145501
(
2005
).
4.
J.
Tomasi
and
M.
Persico
,
Chem. Rev.
94
,
2027
(
1994
).
5.
C. J.
Cramer
and
D. G.
Truhlar
,
Chem. Rev.
99
,
2161
(
1999
).
6.
7.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
8.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
9.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
10.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
11.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
12.
P. H. L.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
13.
H. A.
Stern
and
B. J.
Berne
,
J. Chem. Phys.
115
,
7622
(
2001
).
14.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
15.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
16.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
17.
A.
Pasquarello
and
R.
Resta
,
Phys. Rev. B
68
,
174302
(
2003
).
18.
M.
Sharma
,
R.
Resta
, and
R.
Car
,
Phys. Rev. Lett.
98
,
247401
(
2007
).
19.
L.
Onsager
,
J. Am. Chem. Soc.
58
,
1486
(
1936
).
20.
B.
Mennucci
,
E.
Cances
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
21.
E.
Cances
and
B.
Mennucci
,
J. Math. Chem.
23
,
309
(
1998
).
22.
A.
Klamt
and
G.
Schuurmann
,
J. Chem. Soc., Perkin Trans. 2
1993
,
799
(
1993
).
23.
S.
Corni
and
J.
Tomasi
,
J. Chem. Phys.
114
,
3739
(
2001
).
24.
J. L.
Fattebert
and
F.
Gygi
,
Int. J. Quantum Chem.
93
,
139
(
2003
).
25.
J.
Dziedzic
,
H. H.
Helal
,
C. K.
Skylaris
,
A. A.
Mostofi
, and
M. C.
Payne
,
Europhys. Lett.
95
,
43001
(
2011
).
26.
V. M.
Sanchez
,
M.
Sued
, and
D. A.
Scherlis
,
J. Chem. Phys.
131
,
174108
(
2009
).
27.
J. L.
Pascualahuir
and
E.
Silla
,
J. Comput. Chem.
11
,
1047
(
1990
).
28.
E.
Silla
,
F.
Villar
,
O.
Nilsson
,
J. L.
Pascualahuir
, and
O.
Tapia
,
J. Mol. Graphics
8
,
168
(
1990
).
29.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Phys.
132
,
114110
(
2010
).
30.
F.
Lipparini
,
G.
Scalmani
,
B.
Mennucci
,
E.
Cances
,
M.
Caricato
, and
M. J.
Frisch
,
J. Chem. Phys.
133
,
014106
(
2010
).
31.
H. M.
Senn
,
P. M.
Margl
,
R.
Schmid
,
T.
Ziegler
, and
P. E.
Blochl
,
J. Chem. Phys.
118
,
1089
(
2003
).
32.
A. W.
Lange
and
J. M.
Herbert
,
J. Chem. Phys.
133
,
244111
(
2010
).
33.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
,
J. Phys. Chem.
100
,
16098
(
1996
).
34.
K. B.
Wiberg
,
T. A.
Keith
,
M. J.
Frisch
, and
M.
Murcko
,
J. Phys. Chem.
99
,
9072
(
1995
).
35.
D. M.
Chipman
,
J. Chem. Phys.
124
,
224111
(
2006
).
36.
37.
D. D.
Johnson
,
Phys. Rev. B
38
,
12807
(
1988
).
38.
39.
G.
Makov
and
M. C.
Payne
,
Phys. Rev. B
51
,
4014
(
1995
).
40.
a)
I.
Dabo
,
B.
Kozinsky
,
N. E.
Singh-Miller
, and
N.
Marzari
,
Phys. Rev. B
77
,
115139
(
2008
).
b)
I.
Dabo
,
B.
Kozinsky
,
N. E.
Singh-Miller
, and
N.
Marzari
,
Phys. Rev. B
84
,
159910
(
2011
).
41.
Y.
Li
and
I.
Dabo
,
Phys. Rev. B
84
,
155127
(
2011
).
42.
A.
Ben-Naim
,
Solvation Thermodynamics
(
Plenum
,
New York
,
1987
).
43.
A.
Ben-Naim
,
Statistical Thermodynamics for Chemists and Biochemists
(
Plenum
,
New York
,
1992
).
44.
C.
Amovilli
and
B.
Mennucci
,
J. Phys. Chem. B
101
,
1051
(
1997
).
45.
C. J.
Cramer
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
760
(
2008
).
46.
D.
Shivakumar
,
J.
Williams
,
Y. J.
Wu
,
W.
Damm
,
J.
Shelley
, and
W.
Sherman
,
J. Chem. Theory Comput.
6
,
1509
(
2010
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.3676407 for detailed results on the molecules of the fitting set.
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.1, Gaussian Inc. Wallingford, CT,
2009
.
50.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
51.
M. L.
Connolly
,
J. Appl. Crystallogr.
16
,
548
(
1983
).
52.
J. L.
Pascualahuir
,
E.
Silla
, and
I.
Tunon
,
J. Comput. Chem.
15
,
1127
(
1994
).
53.
V.
Barone
,
M.
Cossi
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3210
(
1997
).
54.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
,
J. Am. Chem. Soc.
114
,
10024
(
1992
).
55.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
56.
A. D.
Corso
, PSlibrary version 0.1, see http://qe-forge.org/projects/pslibrary.
57.
M.
Authors
, Quantum ESPRESSO online pseudopotential library, see http://www.quantum-espresso.org/pseudo.php.
58.
M.
Cossi
,
G.
Scalmani
,
N.
Rega
, and
V.
Barone
,
J. Chem. Phys.
117
,
43
(
2002
).
59.
C. G.
Zhan
,
J.
Bentley
, and
D. M.
Chipman
,
J. Chem. Phys.
108
,
177
(
1998
).
60.
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
,
J. Comput. Chem.
22
,
1180
(
2001
).
61.
I.
Soteras
,
C.
Curutchet
,
A.
Bidon-Chanal
,
M.
Orozco
, and
F. J.
Luque
,
J. Mol. Struct.: THEOCHEM
727
,
29
(
2005
).
62.
A.
Klamt
,
B.
Mennucci
,
J.
Tomasi
,
V.
Barone
,
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
,
Acc. Chem. Res.
42
,
489
(
2009
).

Supplementary Material

You do not currently have access to this content.