We have recently introduced a parameterized coupled-cluster singles and doubles model (pCCSD(α, β)) that consists of a bivariate parameterization of the CCSD equations and is inspired by the coupled electron pair approximations. In our previous work, it was demonstrated that the pCCSD(−1, 1) method is an improvement over CCSD for the calculation of geometries, harmonic frequencies, and potential energy surfaces for single bond-breaking. In this paper, we find suitable pCCSD parameters for applications in reaction thermochemistry and thermochemical kinetics. The motivation is to develop an accurate and economical methodology that, when coupled with a robust local correlation framework based on localized pair natural orbitals, is suitable for large-scale thermochemical applications for sizeable molecular systems. It is demonstrated that the original pCCSD(−1, 1) method and several other pCCSD methods are a significant improvement upon the standard CCSD approach and that these methods often approach the accuracy of CCSD(T) for the calculation of reaction energies and barrier heights. We also show that a local version of the pCCSD methodology, implemented within the local pair natural orbital (LPNO) based CCSD code in ORCA, is sufficiently accurate for wide-scale chemical applications. The LPNO based methodology allows us for routine applications to intermediate sized (20–100 atoms) molecular systems and is a significantly more accurate alternative to MP2 and density functional theory for the prediction of reaction energies and barrier heights.

2.
F.
Coester
and
H.
Kümmel
,
Nucl. Phys.
17
,
477
(
1960
).
3.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
4.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
6.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
7.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
8.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-No
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
9.
T.
Helgaker
,
W.
Klopper
, and
D.
Tew
,
Mol. Phys.
106
,
2107
(
2008
).
10.
E. F.
Valeev
and
T. D.
Crawford
,
J. Chem. Phys.
128
,
244113
(
2008
).
11.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
12.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
13.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
14.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
15.
D. G.
Liakos
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Theory Comput.
7
,
76
(
2011
).
16.
W.
Meyer
,
Int. J. Quantum. Chem.
S5
,
341
(
1971
).
17.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
18.
W.
Meyer
,
Theor. Chim. Acta
35
,
277
(
1974
).
19.
W.
Meyer
and
P.
Rosmus
,
J. Chem. Phys.
63
,
2356
(
1975
).
20.
R.
Ahlrichs
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1225
(
1975
).
21.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
22.
R.
Ahlrichs
,
F.
Keil
,
H.
Lischka
,
W.
Kutzelnigg
, and
V.
Staemmler
,
J. Chem. Phys.
63
,
455
(
1975
).
23.
R.
Ahlrichs
,
H.
Lischka
,
B.
Zurawski
, and
W.
Kutzelnigg
,
J. Chem. Phys.
63
,
4685
(
1975
).
24.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
25.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
26.
G.
Rauhut
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
3
,
4853
(
2001
).
27.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
28.
G.
Hetzer
,
M.
Schütz
,
H.
Stoll
, and
H.-J.
Werner
,
J. Chem. Phys.
113
,
9443
(
2000
).
29.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
30.
A. E.
Azhary
,
G.
Rauhut
,
P.
Pulay
, and
H.-J.
Werner
,
J. Chem. Phys.
108
,
5185
(
1998
).
31.
G.
Hetzer
,
P.
Pulay
, and
H.-J.
Werner
,
Chem. Phys. Lett.
290
,
143
(
1998
).
32.
M.
Schütz
,
H.-J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
,
737
(
2004
).
33.
G.
Rauhut
,
P.
Pulay
, and
H.-J.
Werner
,
J. Comput. Chem.
19
,
1241
(
1998
).
34.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
35.
T.
Korona
and
H.-J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
36.
37.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
38.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
39.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
).
40.
S.
Saebø
and
P.
Pulay
,
Ann. Rev. Phys. Chem.
44
,
213
(
1993
).
41.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
42.
F.
Neese
,
A.
Hansen
,
F.
Wennmohs
, and
S.
Grimme
,
Acc. Chem. Res.
42
,
641
(
2009
).
43.
F.
Neese
,
U.
Becker
,
D.
Ganyushin
,
S.
Kossmann
,
A.
Hansen
,
D.
Liakos
,
T.
Petrenko
,
C.
Riplinger
, and
F.
Wennmohs
, ORCA - An ab initio, density functional and semiempirical program package,
University of Bonn
, Germany,
2011
.
44.
L. M. J.
Huntington
and
M.
Nooijen
,
J. Chem. Phys.
133
,
184109
(
2010
).
45.
H. P.
Kelly
and
A. M.
Sessler
,
Phys. Rev.
132
,
2091
(
1963
).
46.
47.
M.
Nooijen
and
R. J.
LeRoy
,
J. Mol. Struct.: THEOCHEM
768
,
25
(
2006
).
48.
I.
Shavitt
and
R. J.
Bartlett
,
Many Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
, Cambridge Molecular Science (
Cambridge University Press
,
New York
,
2009
).
49.
J. F.
Stanton
,
J.
Gauss
,
S. A.
Perera
,
J. D.
Watts
,
A. D.
Yau
,
M.
Nooijen
,
N.
Oliphant
,
P. G.
Szalay
,
W. J.
Lauderdale
,
S. R.
Gwaltney
,
S.
Beck
,
A.
Balková
,
D. E.
Bernholdt
,
K. K.
Baeck
,
P.
Rozyczko
,
H.
Sekino
,
C.
Huber
,
J.
Pittner
,
W.
Cencek
,
D.
Taylor
, and
R. J.
Bartlett
, ACES II is a program product of the Quantum Theory Project,
University of Florida
. Integral packages included are VMOL (
J.
Almlöf
and
P. R.
Taylor
), VPROPS (
P.
Taylor
), ABACUS (
T.
Helgaker
,
H. J.
Aa
. Jensen,
P.
Jørgensen
,
J.
Olsen
, and
P. R.
Taylor
), and HONDO/GAMESS (
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. J.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
).
50.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
51.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
52.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
53.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
);
54.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
55.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
56.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
57.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
58.
C.
Hättig
,
Phys. Chem. Chem. Phys.
7
,
59
(
2005
).
59.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
60.
See supplementary material at http://dx.doi.org/10.1063/1.3682325 for calculated energies, geometries, zero-point and thermal corrections, as well as various data pertaining to the fit set (i.e., animation and individual deviations not provided herein).
61.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
62.
B.
Nagy
,
J.
Csontos
,
M.
Kállay
, and
G.
Tasi
,
J. Phys. Chem. A
114
,
13213
(
2010
).
63.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
64.
P. M.W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Int. J. Quantum Chem.
44
,
319
(
1992
).
65.
J.
Zheng
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
569
(
2007
).
66.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Quantum Chem. Symp.
S23
,
199
(
1989
).
67.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
68.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
9
,
3397
(
2007
).
69.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
6
,
107
(
2010
).
70.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
71.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
72.
V.
Guner
,
K. S.
Khuong
,
A. G.
Leach
,
P. S.
Lee
,
M. D.
Bartberger
, and
K. N.
Houk
,
J. Phys. Chem. A
107
,
11445
(
2003
).
73.
D. H.
Ess
and
K. N.
Houk
,
J. Phys. Chem. A
109
,
9542
(
2005
).
74.
I.
Hyla-Kryspin
and
S.
Grimme
,
Organometallics
23
,
5581
(
2004
).
75.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
76.
D. J.
Thouless
,
The Quantum Mechanics of Many-Body Systems
(
Academic
,
New York
,
1961
).

Supplementary Material

You do not currently have access to this content.