We follow a suggestion by Lipoff and Herschbach [Mol. Phys.108, 1133 (2010) https://doi.org/10.1080/00268971003662912] and compare dressed and bare adiabatic potentials to get insight regarding the low-energy dynamics (e.g., cold reaction) taking place in molecular systems. In this particular case, we are interested to study the effect of conical intersections (ci) on the interacting atoms. For this purpose, we consider vibrational dressed adiabatic and vibrational dressed diabatic potentials in the entrance channel of reactive systems. According to our study, the most one should expect, in case of F + H2, is a mild effect of the (1, 2) ci on its reactive/exchange process−an outcome also supported by experiment. This happens although the corresponding dressed and bare potential barriers (and the corresponding van der Waals potential wells) differ significantly from each other.

1.
(a)
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
Chem. Phys. Lett.
517
,
92
(
2011
);
(b)
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
Eur. Phys. J. D
65
,
373
(
2011
);
(c) “The adiabatic-to-diabatic transformation angle and the Berry phase for coupled Jahn–Teller/Renner–Teller systems: The F + H2 as a case study,” Int. J. Quantum Chem. (in press).
2.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
84
,
457
(
1927
);
M.
Born
,
Festschrift
Goett
,
Nach. Math. Phys.
K1
,
1
(
1951
);
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
New York
,
1954
), Chap. IV.
4.
M.
Baer
,
Beyond Born Oppenheimer; Electronic Non-Adiabatic Coupling Terms and Conical Intersections
(
Wiley
,
Hoboken, New Jersey
,
2006
).
5.
(a)
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
);
(b)
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
283
(
1992
);
(c)
D. R.
Yarkony
,
J. Chem. Phys.
105
,
19456
(
1996
).
6.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
);
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
032506
(
2000
).
7.
T.
Vértesi
,
Á.
Vibók
,
G. J.
Halász
, and
M.
Baer
,
J. Phys. B
37
,
4603
(
2004
);
A.
Das
,
D.
Mukhopadhyay
,
S.
Adhikari
, and
M.
Baer
,
J. Chem. Phys.
133
,
084107
(
2010
);
[PubMed]
A.
Das
and
D.
Mukhopadhyay
, “
The adiabatic-to-diabatic transformation angle and topological phases for strongly interacting states: Solution with four states
,” Int. J. Quantum Chem. (in press).
8.
(a)
S. H.
Lipoff
and
D.
Herschbach
,
Mol. Phys.
108
,
1133
(
2010
).
(b) See also
D.
Herschbach
,
Farad. Discuss.
142
,
9
(
2009
).
9.
E.
Bodo
,
F. A.
Gianturco
, and
A.
Dalgarno
,
J. Chem. Phys.
116
,
9222
(
2002
);
N.
Balakrishnan
and
A.
Dalgarno
,
J. Phys. Chem. A
107
,
7101
(
2003
);
R. V.
Krems
,
Int. Rev. Phys. Chem.
24
,
99
(
2005
);
P. F.
Weck
and
N.
Balakrishnan
,
Int. Rev. Phys. Chem.
25
,
283
(
2006
);
S.
Bovino
,
M.
Taccomi
, and
F. A.
Gianturco
,
J. Phys. Chem. A
115
,
8197
(
2011
).
[PubMed]
10.
This paragraph was taken from page 6 of Ref. 8(a). Reference 33 mentioned in this paragraph is Ref. 11 of the present list (see below).
11.
E.
Rosenman
,
Z.
Hochman-Kowal
,
A.
Persky
, and
M.
Baer
,
Chem. Phys. Lett.
257
,
421
(
1996
).
12.
K.
Stark
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6515
(
1996
).
13.
M.
Gilibert
and
M.
Baer
,
J. Phys. Chem.
98
,
12822
(
1994
);
M.
Gilibert
and
M.
Baer
,
J. Phys. Chem.
99
,
15748
(
1995
).
14.
M. H.
Alexander
,
H.-J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
109
,
5710
(
1998
);
M. H.
Alexander
,
H.-J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
113
,
11084
(
2000
).
15.
M.
Baer
,
Adv. Chem. Phys.
49
,
191
(
1982
), see also Ref. 4, p. 283, Sec. 3.1.1.3.
16.
(a)
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
);
(b)
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
M.
Schütz
 et al., MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
17.
M.
Baer
,
M.
Faubel
,
B.
Martinez-Haya
,
L. Y.
Rusin
,
U.
Tapp
,
J. P.
Toennies
,
K.
Stark
, and
H.-J.
Werner
,
J. Chem. Phys.
104
,
2743
(
1996
).
18.
D. E.
Manolopoulos
,
J. Chem. Soc. Faraday Trans.
93
,
673
(
1997
).
19.
F. J.
Aoiz
,
L.
Banares
, and
F.
Castillo
,
J. Chem. Phys.
111
,
4013
(
1999
);
B.
Martinez-Haya
,
F. J.
Aoiz
,
L.
Banares
,
P.
Honvault
, and
J. M.
Launay
,
Phys. Chem. Chem. Phys.
1
,
3415
(
1999
).
20.
V.
Aquilanti
,
S.
Cavalli
,
D.
De Fazio
,
A.
Volpi
,
A.
Aguilar
, and
J.
Maria Lucas
,
Chem. Phys.
308
,
237
(
2005
).
21.
(a)
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
);
(b)
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
);
(c)
G. J.
Tawa
,
S. L.
Mielke
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Chem. Phys.
100
,
5751
(
1994
);
(d)
P.
Halvick
and
D. G.
Truhlar
,
J. Chem. Phys.
96
,
2895
(
1992
).
22.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
23.
B.
Heumann
,
K.
Weide
,
R.
Duren
, and
R.
Schinke
,
J. Chem. Phys.
98
,
5508
(
1993
);
B.
Heumann
and
R.
Schinke
,
J. Chem. Phys.
101
,
7488
(
1994
);
H. J.
Werner
,
B.
Follmeg
, and
M. H.
Alexander
,
J. Chem. Phys.
89
,
3139
(
1988
);
D.
Hehareug-Dao
,
X.
Chapuisat
,
J. C.
Lorquet
,
C.
Galloy
, and
G.
Raseev
,
J. Chem. Phys.
78
,
1246
(
1983
).
24.
A.
Alijah
and
E. E.
Nikitin
,
Mol. Phys.
96
,
1399
(
1999
).
25.
L.
Jutier
,
C.
Leonard
, and
F.
Gatti
,
J. Chem. Phys.
130
,
134301
(
2000
).
26.
M. S.
Child
,
Adv. Chem. Phys.
124
,
1
(
2002
).
27.
R.
Abrol
,
A.
Shaw
,
A.
Kuppermann
, and
D. R.
Yarkony
,
J. Chem. Phys.
115
,
4640
(
2001
).
28.
A. J. C.
Varandas
in
Fundamental World of Quantum Chemistry
, edited by
E. J.
Brandas
and
E. S.
Kryachko
(
Kluwer
,
Dordrecht
,
2003
), Vol. II, p.
32
.
29.
S.
Han
and
D. R.
Yarkony
,
J. Chem. Phys.
119
,
5058
(
2003
).
30.
P.
Barragan
,
L. F.
Errea
,
A.
Macias
,
L.
Mendez
,
A.
Riera
,
J. M.
Lucas
, and
A.
Aguilar
,
J. Chem. Phys.
121
,
11629
(
2004
).
I.
Ryb
and
R.
Baer
,
J. Chem. Phys.
121
,
10370
(
2004
);
[PubMed]
R.
Baer
,
J. Chem. Phys.
117
,
7405
(
2002
).
32.
T.
Vertesi
, and
R.
Englman
,
J. Phys. B: At. Mol. Opt. Phys.
41
,
025102
(
2008
);
E.
Bene
,
T.
Vertesi
, and
R.
Englman
,
J. Chem. Phys.
135
,
084101
(
2011
).
[PubMed]
33.
C.
Levi
,
G. J.
Halasz
,
A.
Vibok
,
I.
Bar
,
Y.
Zeiri
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
128
,
244303
(
2008
).
34.
J.
Larson
and
E.
Sjoqvist
,
Phys. Rev. A
79
,
043627
(
2009
).
35.
S.
Al-Jabour
,
M.
Baer
,
O.
Deeb
,
M.
Liebscher
,
J.
Manz
,
X.
Xu
, and
S.
Zilberg
,
J. Phys. Chem. A
114
,
2991
(
2010
).
36.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
,
Annu. Rev. Phys. Chem.
61
,
149
(
2010
).
37.
M. S.
Kaczmarski
and
M.
Rohlfing
,
J. Phys. B, At. Mol. Phys.
43
,
051001
(
2010
);
M. S.
Kaczmarski
,
Y.
Ma
, and
M.
Rohlfing
,
Phys. Rev. B
81
,
115433
(
2010
).
38.
M. J.
Jamieson
,
A. S. C.
Cheung
, and
H.
Ouerdane
,
Eur. Phys. J. D
,
56
,
181
(
2010
).
39.
G. J.
Halász
and
Á.
Vibók
,
Chem. Phys. Lett.
494
,
150
(
2010
);
G. J.
Halász
and
Á.
Vibók
,
Int. J. Quantum Chem.
111
,
342
(
2011
).
40.
A.
Sirjoosingh
and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
115
,
2367
(
2011
).
41.
W.
Skomorowski
,
F.
Pawlowski
,
T.
Korona
,
R.
Moszinski
,
P. S.
Zuckowski
, and
J. M.
Hutson
,
J. Chem. Phys.
134
,
114109
(
2011
).
42.
A.
Yahalom
,
Advances in Classical Field Theory
(
Bentham
,
Oak Park, IL
,
2011
), Chap. 9.
43.
A.
K Paul
,
S.
Ray
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
135
,
034107
(
2011
).
44.
G. J.
Halász
,
Á.
Vibók
,
M.
Sindelka
,
N.
Moiseyev
, and
L. S.
Cederbaum
,
J. Phys. B: At. Mol. Phys.
44
,
175102
(
2011
).
45.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
);
[PubMed]
B.
Sarkar
and
A. J. C.
Varandas
,
Chem. Phys.
389
,
81
(
2011
).
46.
S.
Fatehi
,
E.
Alquire
,
S.
Shao
, and
J.
Subotnik
,
J. Chem. Phys.
135
,
234110
(
2011
).
47.
C.
Evenhuis
and
T. J.
Martinez
,
J. Chem. Phys.
135
,
224110
(
2011
).
48.
(a)
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
,
Chem. Phys. Lett.
330
,
629
(
2000
);
(b)
M.
Baer
,
Chem. Phys. Lett.
330
,
633
(
2000
).
You do not currently have access to this content.