Melting and decay of the superheated sI methane structure are studied using molecular dynamics simulation. The melting curve is calculated by the direct coexistence simulations in a wide range of pressures up to 5000 bar for the SPC/E, TIP4P/2005 and TIP4P/Ice water models and the united-atom model for methane. We locate the kinetic stability boundary of the superheated metastable sI structure that is found to be surprisingly high comparing with the predictions based on the classical nucleation theory.

1.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC
,
Boca Raton, FL
,
2008
), p.
752
.
2.
E. G.
Hammerschmidt
,
Ind. Eng. Chem.
26
,
851
(
1934
).
3.
N.
Iro
,
D.
Gautier
,
F.
Hersant
,
D.
Bockelée-Morvan
, and
J. I.
Lunine
,
Icarus
161
,
511
(
2003
).
4.
S. W.
Kieffer
,
X.
Lu
,
C. M.
Bethke
,
J. R.
Spencer
,
S.
Marshak
, and
A.
Navrotsky
,
Science
314
,
1764
(
2006
).
5.
R. K.
McMullan
and
G. A.
Jeffrey
,
J. Chem. Phys.
42
,
2725
(
1965
).
6.
T. C.W.
Mak
and
R. K.
McMullan
,
J. Chem. Phys.
42
,
2732
(
1965
).
7.
J.
Ripmeester
,
J.
Tse
,
C.
Ratcliffe
, and
B.
Powell
,
Nature (London)
325
,
135
(
1987
).
8.
J. P.
Kennett
,
K. G.
Cannariato
,
I. L.
Hendy
, and
R. J.
Behl
,
Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis
(
American Geophysical Union
,
Washington, DC
,
2003
), p.
216
.
9.
J. P.
Long
and
E. D.
Sloan
,
Int. J. Thermophys.
17
,
1
(
1996
).
10.
I.
Aya
,
K.
Yamane
, and
H.
Nariai
,
Energy
22
,
263
(
1997
).
11.
R. P.
Warzinski
,
R. J.
Lynn
, and
G. D.
Holder
,
Ann. N.Y. Acad. Sci.
912
,
226
(
2000
).
12.
H.
Herzog
,
K.
Caldeira
, and
E.
Adams
, in
Encyclopedia of Ocean Sciences
, edited by
J. H.
Steele
(
Academic
,
Oxford
,
2001
), pp.
408
414
.
13.
E. M.
Yezdimer
,
P. T.
Cummings
, and
A. A.
Chialvo
,
J. Phys. Chem. A
106
,
7982
(
2002
).
14.
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K. N.
Marsh
, and
E. D.
Sloan
,
Science
306
,
469
(
2004
).
15.
H.
Lee
,
J.
Lee
,
D. Y.
Kim
,
J.
Park
,
Y.
Seo
,
H.
Zeng
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
Nature (London)
434
,
743
(
2005
).
16.
F.
Schuth
,
Nature (London)
434
,
712
(
2005
).
17.
T. A.
Strobel
,
C. A.
Koh
, and
E. D.
Sloan
,
J. Phys. Chem. B
112
,
1885
(
2008
).
18.
A.
Martin
and
C. J.
Peters
,
J. Phys. Chem. B
113
,
7558
(
2009
).
19.
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
,
J. Appl. Phys.
106
,
061101
(
2009
).
20.
V. E.
Antonov
,
V. S.
Efimchenko
, and
M.
Tkacz
,
J. Phys. Chem. B
113
,
779
(
2009
).
21.
P. M.
Rodger
,
T. R.
Forester
, and
W.
Smith
,
Fluid Phase Equilib.
116
,
326
(
1996
).
22.
C.
Moon
,
P. C.
Taylor
, and
P. M.
Rodger
,
J. Am. Chem. Soc.
125
,
4706
(
2003
).
23.
N. J.
English
and
J. M. D.
MacElroy
,
J. Chem. Phys.
120
,
10247
(
2004
).
24.
N. J.
English
,
J. K.
Johnson
, and
C. E.
Taylor
,
J. Chem. Phys.
123
,
244503
(
2005
).
25.
H.
Nada
,
J. Phys. Chem. B
110
,
16526
(
2006
).
26.
J.
Vatamanu
and
P. G.
Kusalik
,
J. Phys. Chem. B
110
,
15896
(
2006
).
27.
G.
Guo
,
Y.
Zhang
, and
H.
Liu
,
J. Phys. Chem. C
111
,
2595
(
2007
).
28.
V. V.
Sizov
and
E. M.
Piotrovskaya
,
J. Phys. Chem. B
111
,
2886
(
2007
).
29.
O.
Subbotin
,
V.
Belosludov
,
E.
Brodskaya
,
E.
Piotrovskaya
, and
V.
Sizov
,
Rus. J. Phys. Chem. A
82
,
1303
(
2008
).
30.
G.
Guo
,
Y.
Zhang
,
M.
Li
, and
C.
Wu
,
J. Chem. Phys.
128
,
194504
(
2008
).
31.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
,
Science
326
,
1095
(
2009
).
32.
N. J.
English
and
G. M.
Phelan
,
J. Chem. Phys.
131
,
074704
(
2009
).
33.
E. M.
Myshakin
,
H.
Jiang
,
R. P.
Warzinski
, and
K. D.
Jordan
,
J. Phys. Chem. A
113
,
1913
(
2009
).
34.
Y.
Tung
,
L.
Chen
,
Y.
Chen
, and
S.
Lin
,
J. Phys. Chem. B
114
,
10804
(
2010
).
35.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
36.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
37.
M. M.
Conde
and
C.
Vega
,
J. Chem. Phys.
133
,
064507
(
2010
).
38.
J. L. F.
Abascal
,
E.
Sanz
,
R. G.
Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
39.
L.
Jensen
,
K.
Thomsen
,
N.
von Solms
,
S.
Wierzchowski
,
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
,
J. Phys. Chem. B
114
,
5775
(
2010
).
40.
C.
Gutt
,
B.
Asmussen
,
W.
Press
,
M. R.
Johnson
,
Y. P.
Handa
, and
J. S.
Tse
,
J. Chem. Phys.
113
,
4713
(
2000
).
41.
J. A.
Hayward
and
J. R.
Reimers
,
J. Chem. Phys.
106
,
1518
(
1997
).
42.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter.
20
,
153101
(
2008
).
43.
N.
Gribova
,
Y.
Fomin
,
D.
Frenkel
, and
V.
Ryzhov
,
Phys. Rev. E
79
,
1
(
2009
).
44.
Y.
Fomin
and
V.
Ryzhov
,
Phys. Lett. A
375
,
2181
(
2011
).
45.
Y. D.
Fomin
,
E. N.
Tsiok
, and
V. N.
Ryzhov
,
J. Chem. Phys.
135
,
124512
(
2011
).
46.
H.
Jiang
,
K. D.
Jordan
, and
C. E.
Taylor
,
J. Phys. Chem. B
111
,
6486
(
2007
).
47.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
48.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
49.
B.
Guillot
and
Y.
Guissani
,
J. Chem. Phys.
99
,
8075
(
1993
).
50.
D.
Paschek
,
J. Chem. Phys.
120
,
6674
(
2004
).
51.
R.
Sun
and
Z.
Duan
,
Geochim. Cosmochim. Acta
69
,
4411
(
2005
).
52.
H.
Docherty
,
A.
Galindo
,
C.
Vega
, and
E.
Sanz
,
J. Chem. Phys.
125
,
074510
(
2006
).
53.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill
,
New York
,
1981
).
54.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
55.
S.
Liang
and
P. G.
Kusalik
,
J. Phys. Chem. B
114
,
9563
(
2010
).
56.
Y. A.
Dyadin
,
E. Y.
Aladko
, and
E. G.
Larionov
,
Mendeleev Communications
7
,
34
(
1997
).
57.
J. R.
Morris
,
C. Z.
Wang
,
K. M.
Ho
, and
C. T.
Chan
,
Phys. Rev. B
49
,
3109
(
1994
).
58.
S. V.
Starikov
and
V. V.
Stegailov
,
Phys. Rev. B
80
,
220104
(
2009
).
59.
V.
Istomin
,
V.
Kvon
, and
V.
Durov
,
Gas Ind. Russ.
4
,
13
(
2006
), available online at http://www.gas-journal.ru/dgir/dgir_detailed_work.php?DGIR_ELEMENT_ID=283&WORK_ELEMENT_ID=5643.
60.
V.
Istomin
,
V.
Yakushev
,
N.
Makhonina
,
V.
Kwon
, and
E.
Chuvilin
,
Gas Ind. Russ.
4
,
16
(
2006
), available online at http://www.gas-journal.ru/dgir/dgir_detailed_work.php?DGIR_ELEMENT_ID=283&WORK_ELEMENT_ID=5645.
61.
K.
Lu
and
Y.
Li
,
Phys. Rev. Lett.
80
,
4474
(
1998
).
62.
G. E.
Norman
and
V. V.
Stegailov
,
Mol. Simul.
30
,
397
(
2004
).
63.
A.
Kuksin
,
G.
Norman
, and
V.
Stegailov
,
High Temp.
45
,
37
(
2007
).
64.
S.
Luo
and
T. J.
Ahrens
,
Appl. Phys. Lett.
82
,
1836
(
2003
).
65.
J.
Schmelzer
,
Nucleation Theory and Applications
(
Wiley-VCH
,
Berlin
,
2005
).
66.
T.
Uchida
,
T.
Ebinuma
, and
T.
Ishizaki
,
J. Phys. Chem. B
103
,
3659
(
1999
).
67.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
,
J. Phys. Chem. C
115
,
21241
(
2011
).
68.
A.
Kuksin
,
G.
Norman
,
V.
Pisarev
,
V.
Stegailov
, and
A.
Yanilkin
,
Phys. Rev. B
82
,
174101
(
2010
).
You do not currently have access to this content.