The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.

1.
S.
Bernèche
and
B.
Roux
,
Nature London
414
,
73
(
2001
).
2.
M. D.
Fayer
and
N. E.
Levinger
,
Annu. Rev. Anal. Chem.
3
,
89
(
2010
).
3.
N. E.
Levinger
and
L. A.
Swafford
,
Annu. Rev. Phys. Chem.
60
,
385
(
2009
).
4.
D. E.
Moilanen
,
I. R.
Piletic
, and
M. D.
Fayer
,
J. Phys. Chem. C
111
,
8884
(
2007
).
5.
K.
Gethard
,
O.
Sae-Khow
, and
S.
Mitra
,
ACS Appl. Mater. Interfaces
3
,
110
(
2011
).
6.
P.
Gallo
,
M.
Rovere
, and
S.-H.
Chen
,
J. Phys. Chem. Lett.
1
,
729
(
2010
).
7.
8.
A.
Scodinu
and
J. T.
Fourkas
,
J. Phys. Chem. B
106
,
10292
(
2002
).
9.
R. A.
Farrer
and
J. T.
Fourkas
,
Acc. Chem. Res.
36
,
605
(
2003
).
10.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Phys. Rev. E
73
,
041604
(
2006
).
11.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
J. Phys. Chem. B
113
,
13723
(
2009
).
12.
C. A.
Cerdeiriña
,
P. G.
Debenedetti
,
P. J.
Rossky
, and
N.
Giovambattista
,
J. Phys. Chem. Lett.
2
,
1000
(
2011
).
13.
R.
Mancinelli
,
F.
Bruni
, and
M. A.
Ricci
,
J. Phys. Chem. Lett.
1
,
1277
(
2010
).
14.
M.-C.
Bellissent-Funel
,
J.
Lal
, and
L.
Bosio
,
J. Chem. Phys.
98
,
4246
(
1993
).
15.
S.
Stapf
and
R.
Kimmich
,
J. Chem. Phys.
103
,
2247
(
1995
).
16.
T.
Takamuku
,
M.
Yamagami
,
H.
Wakita
,
Y.
Masuda
, and
T.
Yamaguchi
,
J. Phys. Chem. B
101
,
5730
(
1997
).
17.
H.
Thompson
,
A. K.
Soper
,
M. A.
Ricci
,
F.
Bruni
, and
N. T.
Skipper
,
J. Phys. Chem. B
111
,
5610
(
2007
).
18.
J.
Jelassi
,
T.
Grosz
,
I.
Bako
,
M. C.
Bellissent-Funel
,
J. C.
Dore
,
H. L.
Castricum
, and
R.
Sridi-Dorbez
,
J. Chem. Phys.
134
,
064509
(
2011
).
19.
L.
Frunza
,
A.
Schönhals
,
H.
Kosslick
, and
S.
Frunza
,
Eur. Phys. J. E
26
,
379
(
2008
).
20.
P.
Gallo
,
M.
Rovere
, and
S.-H.
Chen
,
J. Phys.: Condens. Matter
22
,
284102
(
2010
).
21.
A. A.
Milischuk
and
B. M.
Ladanyi
,
J. Chem. Phys.
135
,
174709
(
2011
).
22.
G.
Liu
,
Y.-Z.
Li
, and
J.
Jonas
,
J. Chem. Phys.
95
,
6892
(
1991
).
23.
J. P.
Korb
,
A.
Delville
,
S.
Xu
,
G.
Demeulenaere
,
P.
Costa
, and
J.
Jonas
,
J. Chem. Phys.
101
,
7074
(
1994
).
24.
D.
Laage
and
J. T.
Hynes
,
Science
311
,
832
(
2006
).
25.
D.
Laage
and
J. T.
Hynes
,
J. Phys. Chem. B
112
,
14230
(
2008
).
26.
D.
Laage
,
G.
Stirnemann
,
F.
Sterpone
,
R.
Rey
, and
J. T.
Hynes
,
Annu. Rev. Phys. Chem.
62
,
395
(
2011
).
27.
The DL_POLY molecular simulation package. See http://www.ccp5.ac.uk/DL_POLY.
28.
The TOWHEE Monte Carlo molecular simulation program. See http://towhee.sourceforge.net.
29.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
30.
T. S.
Gulmen
and
W. H.
Thompson
,
Langmuir
22
,
10919
(
2006
).
32.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
33.
D. P.
Shoemaker
,
C. W.
Garland
, and
J. W.
Nibler
,
Experiments in Physical Chemistry
, (
McGraw-Hill
,
New York
,
1989
).
34.
Y. S.
Lin
,
P. A.
Pieniazek
,
M.
Yang
, and
J. L.
Skinner
,
J. Chem. Phys.
132
,
174505
(
2010
).
35.
S. R. V.
Castrillón
,
N.
Giovambattista
,
I. A.
Aksay
, and
P. G.
Debenedetti
,
J. Phys. Chem. B
113
,
1438
(
2009
).
36.
H. J.
Bakker
,
Y. L. A.
Rezus
, and
R. L. A.
Timmer
,
J. Phys. Chem. A
112
,
11523
(
2008
).
37.
C.
Mattea
,
J.
Qvist
, and
B.
Halle
,
Biophys. J.
95
,
2951
(
2008
).
38.
D.
Andreatta
,
J. L. P.
Lustres
,
S. A.
Kovalenko
,
N. P.
Ernsting
,
C. J.
Murphy
,
R. S.
Coleman
, and
M. A.
Berg
,
J. Am. Chem. Soc.
127
,
7270
(
2005
).
39.
S.
Sen
,
D.
Andreatta
,
S. Y.
Ponomarev
,
D. L.
Beveridge
, and
M. A.
Berg
,
J. Am. Chem. Soc.
131
,
1724
(
2009
).
40.
K. E.
Furse
and
S. A.
Corcelli
,
J. Am. Chem. Soc.
133
,
720
(
2011
).
41.
P. A.
Pieniazek
,
Y.-S.
Lin
,
J.
Chowdhary
,
B. M.
Ladanyi
, and
J. L.
Skinner
,
J. Phys. Chem. B
113
,
15017
(
2009
).
42.
D. E.
Moilanen
,
E. E.
Fenn
,
D. B.
Wong
, and
M. D.
Fayer
,
J. Chem. Phys.
131
,
014704
(
2009
).
43.
I. R.
Piletic
,
D. E.
Moilanen
,
D. B.
Spry
,
N. E.
Levinger
, and
M. D.
Fayer
,
J. Phys. Chem. A
110
,
4985
(
2006
).
44.
C. M.
Morales
and
W. H.
Thompson
,
J. Phys. Chem. A
113
,
1922
(
2009
).
45.
For a given nominal distance, d, the correlation function C2(t; d) is obtained by averaging over all hydrogen atom distances within 0.5 Å of d. For example, C2(t; d = 2 Å) is obtained by averaging over all OH bonds with H⋅⋅⋅Opore distances at t = 0 within the range 1.5–2.5 Å.
46.
We note that the transient nature of non-hydrogen-bonded OH groups near the hydrophobic pore interface is virtually unchanged from that of bulk water. That is, the distribution of waiting times for OH groups which are not hydrogen bonded to form a hydrogen bond is virtually the same for water in the hydrophobic pore (decaying to zero in less than 1 ps) as in bulk water.
47.
G.
Stirnemann
,
P. J.
Rossky
,
J. T.
Hynes
, and
D.
Laage
,
Faraday Discuss.
146
,
263
(
2010
).
48.
G.
Stirnemann
,
S. R. V.
Castrillon
,
J. T.
Hynes
,
P. J.
Rossky
,
P. G.
Debenedetti
, and
D.
Laage
,
Phys. Chem. Chem. Phys.
13
,
19911
(
2011
).
49.
F.
Sterpone
,
G.
Stirnemann
,
J. T.
Hynes
, and
D.
Laage
,
J. Phys. Chem. B
114
,
2083
(
2010
).
50.
J.
Boisson
,
G.
Stirnemann
,
D.
Laage
, and
J. T.
Hynes
,
Phys. Chem. Chem. Phys.
13
,
19895
(
2011
).
51.
The present simulations are based on the classical SPC/E water force field. Next to strong H-bond acceptor sites, an explicit description of polarizability and three-body effects may be needed.
You do not currently have access to this content.