Ultraviolet (UV) photodissociation dynamics of jet-cooled phenyl radicals (C6H5 and C6D5) are studied in the photolysis wavelength region of 215–268 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The phenyl radicals are produced from 193-nm photolysis of chlorobenzene and bromobenzene precursors. The H-atom photofragment yield spectra have a broad peak centered around 235 nm and are in good agreement with the UV absorption spectra of phenyl. The H + C6H4 product translational energy distributions, P(ET)’s, peak near ∼7 kcal/mol, and the fraction of average translational energy in the total excess energy, 〈fT〉, is in the range of 0.20–0.35 from 215 to 268 nm. The H-atom product angular distribution is isotropic. The dissociation rates are in the range of 107–108 s−1 with internal energy from 30 to 46 kcal/mol above the threshold of the lowest energy channel H + o-C6H4 (ortho-benzyne), comparable with the rates from the Rice–Ramsperger–Kassel–Marcus theory. The results from the fully deuterated phenyl radical are identical. The dissociation mechanism is consistent with production of H + o-C6H4, as the main channel from unimolecular decomposition of the ground electronic state phenyl radical following internal conversion of the electronically excited state.

1.
S. H.
Bauer
and
C. F.
Aten
,
J. Chem. Phys.
39
,
1253
(
1963
).
2.
A.
Yokoyama
,
X.
Zhao
,
E. J.
Hintsa
,
R. E.
Continetti
, and
Y. T.
Lee
,
J. Chem. Phys.
92
,
4222
(
1990
).
3.
B.
Shukla
,
A.
Susa
,
A.
Miyoshi
, and
M.
Koshi
,
J. Phys. Chem. A
111
,
8308
(
2007
).
4.
B.
Shukla
and
M.
Koshi
,
Phys. Chem. Chem. Phys.
12
,
2427
(
2010
).
5.
X. B.
Gu
and
R. I.
Kaiser
,
Acc. Chem. Res.
42
,
290
(
2009
).
6.
J. G.
Radziszewski
,
M. R.
Nimlos
,
P. R.
Winter
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
118
,
7400
(
1996
).
7.
A. V.
Friderichsen
,
J. G.
Radziszewski
,
M. R.
Nimlos
,
P. R.
Winter
,
D. C.
Dayton
,
D. E.
David
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
123
,
1977
(
2001
).
8.
E. N.
Sharp
,
M. A.
Roberts
, and
D. J.
Nesbitt
,
Phys. Chem. Chem. Phys.
10
,
6592
(
2008
).
9.
A.
Lapinski
,
J.
Spanget-Larsen
,
M.
Langgard
,
J.
Waluk
, and
J. G.
Radziszewski
,
J. Phys. Chem. A
105
,
10520
(
2001
).
10.
R. J.
McMahon
,
M. C.
McCarthy
,
C. A.
Gottlieb
,
J. B.
Dudek
,
J. F.
Stanton
, and
P.
Thaddeus
,
Astrophys. J.
590
,
L61
(
2003
).
11.
G.
Porter
and
B.
Ward
,
Proc. R. Soc. London
287
,
457
(
1965
).
12.
K.
Tonokura
,
Y.
Norikane
,
M.
Koshi
,
Y.
Nakano
,
S.
Nakamichi
,
M.
Goto
,
S.
Hashimoto
,
M.
Kawasaki
,
M. P. S.
Andersen
,
M. D.
Hurley
, and
T. J.
Wallington
,
J. Phys. Chem. A
106
,
5908
(
2002
).
13.
N.
Ikeda
,
N.
Nakashima
, and
K.
Yoshihara
,
J. Am. Chem. Soc.
107
,
3381
(
1985
).
14.
J. M.
Engert
and
B.
Dick
,
Appl. Phys. B-Lasers and Optics
63
,
531
(
1996
).
15.
T. J.
Wallington
,
H.
Egsgaard
,
O. J.
Nielsen
,
J.
Platz
,
J.
Sehested
, and
T.
Stein
,
Chem. Phys. Lett.
290
,
363
(
1998
).
16.
J. G.
Radziszewski
,
Chem. Phys. Lett.
301
,
565
(
1999
).
17.
M.
Krauss
and
S.
Roszak
,
J. Mol. Struct.: THEOCHEM
116
,
155
(
1994
).
18.
G. S.
Kim
,
A. M.
Mebel
, and
S. H.
Lin
,
Chem. Phys. Lett.
361
,
421
(
2002
).
19.
M.
Biczysko
,
J.
Bloino
, and
V.
Barone
,
Chem. Phys. Lett.
471
,
143
(
2009
).
20.
L. K.
Madden
,
L. V.
Moskaleva
,
S.
Kristyan
, and
M. C.
Lin
,
J. Phys. Chem. A
101
,
6790
(
1997
).
21.
H.
Wang
,
A.
Laskin
,
N. W.
Moriarty
, and
M.
Frenklach
,
Proc. Combust. Inst.
28
,
1545
(
2000
).
22.
X.
Lories
,
J.
Vandooren
, and
D.
Peeters
,
Phys. Chem. Chem. Phys.
12
,
3762
(
2010
).
23.
J. H.
Kiefer
,
L. J.
Mizerka
,
M. R.
Patel
, and
H. C.
Wei
,
J. Phys. Chem.
89
,
2013
(
1985
).
24.
M. J. S.
Dewar
,
W. C.
Gardiner
,
M.
Frenklach
, and
I.
Oref
,
J. Am. Chem. Soc.
109
,
4456
(
1987
).
25.
V. S.
Rao
and
G. B.
Skinner
,
J. Phys. Chem.
88
,
5990
(
1984
).
26.
V. S.
Rao
and
G. B.
Skinner
,
J. Phys. Chem.
92
,
2442
(
1988
).
27.
S. P.
Walch
,
J. Chem. Phys.
103
,
8544
(
1995
).
28.
C. M.
Tseng
,
Y. M.
Choi
,
C. L.
Huang
,
C. K.
Ni
,
Y. T.
Lee
, and
M. C.
Lin
,
J. Phys. Chem. A
108
,
7928
(
2004
).
29.
B.
Negru
,
S. J.
Goncher
,
A. L.
Brunsvold
,
G. M. P.
Just
,
D.
Park
, and
D. M.
Neumark
,
J. Chem. Phys.
133
,
074302
(
2010
).
30.
G.
Amaral
,
K. S.
Xu
, and
J. S.
Zhang
,
J. Chem. Phys.
114
,
5164
(
2001
).
31.
K. S.
Xu
,
G.
Amaral
, and
J. S.
Zhang
,
J. Chem. Phys.
111
,
6271
(
1999
).
32.
W. D.
Zhou
,
Y.
Yuan
,
S. P.
Chen
, and
J. S.
Zhang
,
J. Chem. Phys.
123
,
054330
(
2005
).
33.
Y.
Song
,
X. F.
Zheng
,
M.
Lucas
, and
J. S.
Zhang
,
Phys. Chem. Chem. Phys.
13
,
8296
(
2011
).
34.
M.
Kadi
,
J.
Davidsson
,
A. N.
Tarnovsky
,
M.
Rasmusson
, and
E.
Akesson
,
Chem. Phys. Lett.
350
,
93
(
2001
).
35.
M. S.
Park
,
K. W.
Lee
, and
K. H.
Jung
,
J. Chem. Phys.
114
,
10368
(
2001
).
36.
T.
Ichimura
and
Y.
Mori
,
J. Chem. Phys.
58
,
288
(
1973
).
37.
J. S.
Zhang
,
M.
Dulligan
, and
C.
Wittig
,
J. Phys. Chem.
99
,
7446
(
1995
).
38.
X.
Zhao
, Ph.D. dissertation,
University of California
, Berkeley,
1988
.
39.
R. N.
Zare
,
Photochemistry
4
,
1
(
1972
).
40.
H. J.
Deyerl
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
111
,
3441
(
1999
).
41.
T.
Baer
and
W. L.
Hase
,
Unimolecular Reaction Dynamics: Theory and Experiments
(
Oxford University Press
,
New York
,
1996
).
42.
C. E.
Klots
,
Acc. Chem. Res.
21
,
16
(
1988
).
43.
D.
Fati
,
A. J.
Lorquet
,
R.
Locht
,
J. C.
Lorquet
, and
B.
Leyh
,
J. Phys. Chem. A
108
,
9777
(
2004
).
44.
J. C.
Lorquet
,
J. Phys. Chem. A
104
,
5422
(
2000
).
You do not currently have access to this content.