In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys.131, 084104 (2009) https://doi.org/10.1063/1.3212883] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method.

1.
C.
Hättig
and
A.
Köhn
,
J. Chem. Phys.
117
,
6939
(
2002
).
2.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
).
3.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
127
,
064107
(
2007
).
4.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
5.
P.
Sherwood
, in
Modern Methods and Algorithms of Quantum Chemistry
,
NIC Series
Vol. 1, edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
Jülich
,
2000
), pp.
257
277
.
6.
J.
Gao
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
, (
VCH
,
New York
,
1995
), Vol. 7, pp.
119
185
.
7.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem.
48
,
1198
(
2009
).
8.
S.
Humbel
,
S.
Sieber
, and
K.
Morokuma
,
J. Chem. Phys.
105
,
1959
(
1996
).
9.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
19357
(
1996
).
10.
O.
Christiansen
and
K. V.
Mikkelsen
,
J. Chem. Phys.
110
,
8348
(
1999
).
11.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
Mol. Phys.
100
,
1813
(
2002
).
12.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Phys. Chem. A
107
,
2578
(
2003
).
13.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Chem. Phys.
118
,
1620
(
2003
).
14.
K.
Sneskov
,
T.
Schwabe
,
J.
Kongsted
, and
O.
Christiansen
,
J. Chem. Phys.
134
,
104108
(
2011
).
15.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
16.
G.
Senatore
and
K.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
17.
18.
T. A.
Wesolowski
,
J. Phys. A
36
,
10607
(
2003
).
19.
O. V.
Gritsenko
and
L.
Visscher
,
Phys. Rev. A
82
,
032519
(
2010
).
20.
C. R.
Jacob
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Phys.
126
,
234116
(
2007
).
21.
A.
Savin
and
T. A.
Wesolowski
, in
Progress in Theoretical Chemistry and Physics
, Advances in the Theory of Atomic and Molecular Systems Vol. 19, edited by
P.
Piecuch
,
J.
Maruani
,
G.
Delgado-Barrio
, and
S.
Wilson
(Springer, New York,
2010
), pp.
311
326
.
22.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
I. T. F.
Miller
,
J. Chem. Phys.
133
,
084103
(
2010
).
23.
T. A.
Wesolowski
,
H.
Chermette
, and
J.
Weber
,
J. Chem. Phys.
105
,
9182
(
1996
).
24.
T. A.
Wesolowski
and
J.
Weber
,
Int. J. Quantum Chem.
61
,
303
(
1997
).
25.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
26.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
27.
S. M.
Beyhan
,
A. W.
Gotz
,
C. R.
Jacob
, and
L.
Visscher
,
J. Chem. Phys.
132
,
044114
(
2010
).
28.
M.
Iannuzzi
,
B.
Kirchner
, and
J.
Hutter
,
Chem. Phys. Lett.
421
,
16
(
2006
).
29.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
30.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
,
577
(
2004
).
31.
J.
Neugebauer
,
J. Chem. Phys.
126
,
134116
(
2007
).
32.
J.
Neugebauer
,
J. Chem. Phys.
131
,
084104
(
2009
).
33.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. Fonseca
Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
34.
C. R.
Jacob
,
J.
Neugebauer
,
L.
Jensen
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
8
,
2349
(
2006
).
36.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
,
094115
(
2005
).
37.
J.
Neugebauer
,
Ch. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
38.
J. M.
García-Lastra
,
T.
Wesolowski
,
M. T.
Barriuso
,
J. A.
Aramburu
, and
M.
Moreno
,
J. Phys.: Condens. Matter
18
,
1519
(
2006
).
39.
M.
Zbiri
,
C. A.
Daul
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
2
,
1106
(
2006
).
40.
R. E.
Bulo
,
C. R.
Jacob
, and
L.
Visscher
,
J. Phys. Chem. A
112
,
2640
(
2008
).
41.
J.
Neugebauer
and
E. J.
Baerends
,
J. Phys. Chem. A
110
,
8786
(
2006
).
42.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
43.
N.
Govind
,
Y. A.
Wang
,
A. J.R.
da Silva
, and
E. A.
Carter
,
Chem. Phys. Lett.
295
,
129
(
1998
).
44.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
45.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).
46.
S.
Sharifzadeh
,
P.
Huang
, and
E. A.
Carter
,
Chem. Phys. Lett.
470
,
347
(
2009
).
47.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
48.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
Phys. Rev. Lett.
86
,
5954
(
2001
).
49.
T.
Klüner
,
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
116
,
42
(
2002
).
50.
A. S. P.
Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
,
5353
(
2008
).
51.
Y. G.
Khait
and
M. R.
Hoffmann
,
J. Chem. Phys.
133
,
044107
(
2010
).
52.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
,
Int. J. Quantum Chem.
68
,
1
(
1998
).
53.
P.
Sałek
,
T.
Helgaker
, and
T.
Saue
,
Chem. Phys.
311
,
187
(
2005
).
54.
N.
Govind
,
Y. A.
Wang
, and
E. A.
Carter
,
J. Chem. Phys.
110
,
7677
(
1999
).
55.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
56.
P.
Elliott
,
K.
Burke
,
M. H.
Cohen
, and
A.
Wasserman
,
Phys. Rev. A
82
,
024501
(
2010
).
57.
C.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
135
,
194104
(
2011
).
58.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
59.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
,
J. Chem. Theory Comput.
6
,
1971
(
2010
).
60.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
61.
S.
Sharifzadeh
,
P.
Huang
, and
E. A.
Carter
,
Chem. Phys. Lett.
470
,
347
(
2009
).
62.
T. A.
Wesolowski
,
Phys. Rev. A
77
,
012504
(
2008
).
63.
F.
Aquilante
and
T. A.
Wesolowski
,
J. Chem. Phys.
135
,
084120
(
2011
).
64.
O.
Christiansen
,
Theor. Chem. Acc.
116
,
106
(
2006
).
65.
T.
Saue
and
H. J.A.
Jensen
,
J. Chem. Phys.
118
,
522
(
2003
).
66.
S.
Coriani
,
S.
Høst
,
B.
Jansík
,
L.
Thøgersen
,
J.
Olsen
,
P.
Jørgensen
,
S.
Reine
,
F.
Pawłowski
,
T.
Helgaker
, and
P.
Sałek
,
J. Chem. Phys.
126
,
154108
(
2007
).
67.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
68.
P.
Sałek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
,
J. Chem. Phys.
117
,
9630
(
2002
).
69.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
70.
C.
Hättig
and
P.
Jørgensen
,
J. Chem. Phys.
109
,
2762
(
1998
).
71.
O.
Christiansen
,
C.
Hättig
, and
J.
Gauss
,
J. Chem. Phys.
109
,
4745
(
1998
).
72.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
J. Chem. Phys.
103
,
7429
(
1995
).
73.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley VCH
,
Berlin
,
2000
).
74.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
75.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
,
J. Chem. Phys.
92
,
4924
(
1990
).
76.
O.
Christiansen
,
A.
Halkier
,
H.
Koch
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
108
,
2801
(
1998
).
77.
C. B.
Nielsen
,
O.
Christiansen
,
K. V.
Mikkelsen
, and
J.
Kongsted
,
J. Chem. Phys.
126
,
154112
(
2007
).
78.
J. M.
Olsen
,
K.
Aidas
, and
J.
Kongsted
,
J. Chem. Theory Comput.
6
,
3721
(
2010
).
79.
R.
Bast
,
H. J. Aa.
Jensen
,
T.
Saue
, and
L.
Visscher
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J. K.
Lærdahl
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
C. V.
Larsen
,
H. S.
Nataraj
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. K.
Pedersen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC11 (
2011
), see http://dirac.chem.vu.nl.
80.
Ch. R.
Jacob
,
S. M.
Beyhan
,
R. E.
Bulo
,
A. S.P.
Gomes
,
A. W.
Götz
,
K.
Kiewisch
,
J.
Sikkema
, and
L.
Visscher
,
J. Comput. Chem.
32
,
2328
(
2011
).
81.
ADF, Amsterdam density functional program, Theoretical Chemistry,
Vrije Universiteit Amsterdam
, see http://www.scm.com,
2011
.
82.
J.
Neugebauer
,
J. Phys. Chem. B
112
,
2207
(
2008
).
You do not currently have access to this content.