We show that quasi-standing wave patterns appear in the two-variable Oregonator model of the Belousov-Zhabotinsky reaction when a cross-diffusion term is added, no wave instability is required in this case. These standing waves have a frequency that is half the frequency of bulk oscillations displayed in the absence of diffusive coupling. The standing wave patterns show a dependence on the systems size. Regular standing waves can be observed for small systems, when the system size is an integer multiple of half the wavelength. For intermediate sizes, irregular patterns are observed. For large sizes, the system shows an irregular state of spatiotemporal chaos, where standing waves drift, merge, and split, and also phase slips may occur.
REFERENCES
1.
M. C.
Cross
and P. C.
Hohenberg
, Rev. Mod. Phys.
65
, 851
(1993
).2.
T.
Cazenave
and P. L.
Lions
, Commun. Math. Phys.
85
, 549
(1982
).3.
M. F.
Crommie
, C. P.
Lutz
, and D. M.
Eigler
, Nature (London)
363
, 524
(1993
).4.
F.
Melo
, P. B.
Umbanhowar
, and H. L.
Swinney
, Phys. Rev. Lett.
75
, 3838
(1995
).5.
V.
Petrov
, Q.
Ouyang
, and H. L.
Swinney
, Nature (London)
388
, 655
(1997
).6.
A. L.
Lin
, M.
Bertram
, K.
Martinez
, H. L.
Swinney
, A.
Ardelea
, and G. F.
Carey
, Phys. Rev. Lett.
84
, 4240
(2000
);
[PubMed]
A. L.
Lin
, A.
Hagberg
, A.
Ardelea
, M.
Bertram
, H. L.
Swinney
, and E.
Meron
, Phys. Rev. E
62
, 3790
(2000
);A. L.
Lin
, A.
Hagberg
, E.
Meron
, and H. L.
Swinney
, Phys. Rev. E
69
, 066217
(2004
).7.
M.
Bertram
, C.
Beta
, H. H.
Rotermund
, and G.
Ertl
, J. Phys. Chem. B
107
, 9610
(2003
).8.
P. S.
Bodega
, P.
Kaira
, C.
Beta
, D.
Krefting
, D.
Bauer
, B.
Mirwald-Schulz
, B. C.
Punckt
and H. H.
Rotermund
, New J. Phys.
9
, 61
(2007
).9.
V. K.
Vanag
, L.
Yang
, M.
Dolnik
, A. M.
Zhabotinsky
, and I. R.
Epstein
, Nature (London)
406
, 389
(2000
).10.
H.
Varela
, C.
Beta
, A.
Bonnefont
, and K.
Krischer
, Phys. Chem. Chem. Phys.
7
, 2429
(2005
).11.
M.
Bertram
, C.
Beta
, M.
Pollmann
, A. S.
Mikhailov
, H. H.
Rotermund
, and G.
Ertl
, Phys. Rev. E
67
, 036208
(2003
).12.
M.
Ipsen
, L.
Kramer
, and P. G.
Sorensen
, Phys. Rep.
337
, 193
(2000
).13.
I. S.
Aranson
and L.
Kramer
, Rev. Mod. Phys.
74
, 99
(2002
).14.
P.
Coullet
and K.
Emilsson
, Physica D
61
, 119
–131
(1992
).15.
P.
Coullet
and G.
Iooss
, Phys. Rev. Lett.
64
, 866
(1990
).16.
C.
Elphick
, A.
Hagberg
, and E.
Meron
, Phys. Rev. Lett.
80
, 5007
(1998
).17.
B.
Marts
, A.
Hagberg
, E.
Meron
, and A. L.
Lin
, Phys. Rev. Lett.
93
, 108305
(2004
).18.
F.
Mertens
, R.
Imbihl
, and A.
Mikhailov
, J. Chem. Phys.
101
, 9903
(1994
).19.
M.
Falcke
, H.
Engel
, and M.
Neufeld
, Phys. Rev. E
52
, 763
(1996
).20.
D.
Battogtokh
and A. S.
Mikhailov
, Physica D.
90
, 84
(1996
).21.
C.
Beta
and A. S.
Mikhailov
, Physica D.
199
, 173
(2004
).22.
M.
Stich
and C.
Beta
, Physica D.
239
, 1681
(2005
).23.
A. M.
Zhabotinsky
, M.
Dolnik
, and I. R.
Epstein
, J. Chem. Phys.
103
, 10306
(2000
);M.
Dolnik
, A. B.
Rovinsky
, A. M.
Zhabotinsky
, and I. R.
Epstein
, J. Phys. Chem.
103
, 38
(1999
);M.
Dolnik
, A. M.
Zhabotinsky
, A. B.
Rovinsky
, and I. R.
Epstein
, Chem. Eng. Sci.
55
, 223
(2000
).24.
V. K.
Vanag
and I. R.
Epstein
, Phys. Rev. Lett.
87
, 228301
(2001
).25.
A.
Kaminaga
, V. K.
Vanag
, and I. R.
Epstein
, Phys. Rev. Lett.
95
, 058302
(2005
).26.
V. K.
Vanag
and I. R.
Epstein
, Phys. Chem. Chem. Phys.
11
, 897
(2009
).27.
J. M.
Chung
and E.
Peacock-López
, J. Chem. Phys.
127
, 174903
(2007
).28.
J. M.
Chung
and E.
Peacock-López
, Phys. Lett. A
371
, 41
(2007
).29.
N.
Kumar
and W.
Horsthemke
, Phys. Rev. E
83
, 036105
(1980
).30.
J. J.
Tyson
and P. C.
Fife
, J. Chem. Phys
73
, 2224
(1980
).31.
I.
Berenstein
and C.
Beta
, J. Chem. Phys.
135
, 164901
(2011
).32.
F.
Rossi
, V. K.
Vanag
, and I. R.
Epstein
, Chem.-Eur. J.
17
, 2138
(2011
).33.
K. J.
Painter
and T.
Hillen
, Physica D
240
, 363
(2010
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.