1H spin-lattice relaxation rates R1 = 1/T1 have been measured for partly deuterated glycerol-h5 diluted in fully deuterated glycerol-h0 for progressively lower concentrations of glycerol-h5. By means of the field cycling (FC) technique relaxation dispersion data, R1(ω), have been collected for several temperatures in the frequency range of 10 kHz–20 MHz. In order to disclose the spectral shape of the intra- and intermolecular relaxation, extrapolation of the relaxation data to the zero concentration limit has been performed. The paper confirms that the low frequency excess contribution to the total relaxation rate R1(ω) previously reported for several liquids is of intermolecular origin and reflects translational motion, whereas the high-frequency part is attributed to molecular rotation. Thus, intra- and intermolecular relaxation contributions are spectrally separated. The intermolecular relaxation itself contains also a contribution from rotational motion, which is due to non-central positions of the interacting nuclei in the molecule. This eccentricity effect is quantitatively reproduced by treating the intermolecular spectral density as a sum of translational-like (described by the free diffusion model) and rotational-like contributions (described by a Cole-Davidson function). Applying frequency-temperature superposition master curves as well as individual relaxation dispersion data, R1(ω), are analyzed. It is demonstrated that, in spite of the rotational influence, the translational diffusion coefficients, D(T), can be extracted from the 1H relaxation dispersion which gives 1H NMR relaxometry the potential to become a routine technique determining the diffusion coefficient in liquids.

1.
R.
Kimmich
and
E.
Anoardo
,
Prog. NMR Spectrosc.
44
,
257
(
2004
).
2.
D.
Kruk
,
A.
Hermann
, and
E. A.
Rössler
,
Prog. NMR Spectrosc.
(in press).
3.
R.
Meier
,
R.
Kahlau
,
D.
Kruk
, and
E. A.
Rössler
,
J. Phys. Chem. A
114
,
7847
(
2010
).
4.
D.
Kruk
,
R.
Meier
, and
E. A.
Rössler
,
J. Phys. Chem. A
115
,
951
(
2011
).
5.
P.
Lunkenheimer
,
U.
Schneider
,
R.
Brand
, and
A.
Loidl
,
Contemp. Phys.
41
,
15
(
2000
).
6.
A.
Kudlik
,
S.
Benkhof
,
T.
Blochowicz
,
C.
Tschirwitz
, and
E.
Rössler
,
J. Mol. Struct.
479
,
201
(
1999
).
7.
L. P.
Hwang
and
J. H.
Freed
,
J. Chem. Phys.
63
,
4017
(
1975
).
8.
Y.
Ayant
,
E.
Belorizky
,
J.
Alizon
, and
J.
Gallice
,
J. Phys. (Paris)
36
,
991
(
1975
).
9.
I.
Chang
and
H.
Sillescu
,
J. Phys. Chem.
101
,
8794
(
1997
).
10.
B.
Chen
,
E. E.
Sigmund
, and
W. P.
Halperin
,
Phys. Rev. Lett.
96
,
145502
(
2006
).
11.
J. P.
Kintzinger
and
M. D.
Zeidler
,
Ber. Bunsenges. Phys. Chem.
77
,
98
(
1972
).
12.
13.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon
,
Oxford
,
1961
), p.
302
.
14.
F.
Fujara
,
B. H.
Sillescu
, and
G
Fleischer
,
Z. Phys. B: Condens. Matter
88
,
195
(
1992
).
15.
H. E.
Heinze
and
H.
Pfeiffer
,
Z. Phys.
192
,
329
(
1966
).
16.
J. F.
Harmon
,
Chem. Phys. Lett.
7
,
207
(
1970
).
17.
J. F.
Harmon
and
B. H.
Muller
,
Phys. Rev.
82
,
400
(
1969
).
18.
P.
Lindner
,
E.
Rössler
, and
H.
Sillescu
,
Makromol. Chem.
182
,
3653
(
1981
).
19.
M.
Pöschl
and
H. G.
Hertz
,
J. Phys. Chem.
98
,
8195
(
1994
).
20.
M.
Kehr
,
N.
Fatkullin
, and
R.
Kimmich
,
J. Chem. Phys.
126
,
094903
(
2007
).
21.
Y.
Ayant
,
E.
Belorizky
,
P.
Fries
, and
J.
Rosset
,
J. Phys. (Paris)
38
,
325
(
1977
).
22.
J. P.
Albrand
,
M. C.
Taieb
,
P. H.
Fries
, and
E.
Belorizky
,
J. Chem. Phys.
75
,
2141
(
1981
).
23.
J. P.
Albrand
,
M. C.
Taieb
,
P. H.
Fries
, and
E.
Belorizky
,
J. Chem. Phys.
78
,
5809
(
1983
).
24.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Theory of Electric Polarization
(
Elsevier
,
Amsterdam
,
1973
), Vol. 2.
25.
D
,
Kruk
,
T.
Nilsson
, and
J.
Kowalewski
,
Mol. Phys.
99
,
1435
(
2001
).
26.
D.
Kruk
and
J.
Kowalewski
,
J. Chem. Phys.
130
,
174104
(
2009
).
27.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids
(
Oxford University Press
,
Oxford, England
,
2009
).
You do not currently have access to this content.