Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange–correlation and non-interacting kinetic energy functionals of Kohn–Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange–correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity—associated with the potential that averages over the discontinuity—is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange–correlation and non-interacting kinetic energy functionals.

1.
R. G.
Parr
and
W. T.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
2.
S. B.
Liu
and
R. G.
Parr
,
Phys. Rev. A
53
,
2211
(
1996
).
3.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
4.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
 Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
5.
D. J.
Tozer
,
Phys. Rev. A
58
,
3524
(
1998
).
6.
S. B.
Liu
and
R. G.
Parr
,
Chem. Phys. Lett.
278
,
341
(
1997
).
7.
G. K.-L.
Chan
and
N. C.
Handy
,
Phys. Rev. A
59
,
2670
(
1999
).
8.
S.
Liu
and
R. G.
Parr
,
J. Mol. Struct.: THEOCHEM
501-502
,
29
(
2000
).
9.
S.
Liu
and
R. G.
Parr
,
Phys. Rev. A
55
,
1792
(
1997
).
10.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
11.
R. A.
King
and
N. C.
Handy
,
Phys. Chem. Chem. Phys.
2
,
5049
(
2000
).
12.
R. G.
Parr
and
S. K.
Ghosh
,
Phys. Rev. A
51
,
3564
(
1995
).
13.
E.
Sagvolden
and
J. P.
Perdew
,
Phys. Rev. A
77
,
012517
(
2008
).
14.
P.
Gori-Giorgi
and
A.
Savin
,
Int. J. Quantum Chem.
109
,
2410
(
2009
).
15.
M.
Lein
and
S.
Kümmel
,
Phys. Rev. Lett.
94
,
143003
(
2005
).
16.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
17.
L. J.
Sham
and
M.
Schlüter
,
Phys. Rev. Lett.
51
,
1888
(
1983
).
18.
C.
Cardenas
,
P.
Ayers
,
F.
De Proft
,
D. J.
Tozer
, and
P.
Geerlings
,
Phys. Chem. Chem. Phys.
13
,
2285
(
2011
).
19.
A. M.
Teale
,
F.
De Proft
, and
D. J.
Tozer
,
J. Chem. Phys.
129
,
044110
(
2008
).
20.
R. C.
Morrison
and
Q.
Zhao
,
Phys. Rev. A
51
,
1980
(
1995
).
21.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
22.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
23.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
24.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
25.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
26.
J.
Koput
and
K. A.
Peterson
,
J. Phys. Chem. A
106
,
9595
(
2002
).
27.
N. C.
Handy
and
D. J.
Tozer
,
Mol. Phys.
94
,
707
(
1998
). For H2S, we use r = 1.336Å, θ = 92.1 deg.
28.
Q.
Wu
and
W.
Yang
,
J. Theo. Comp. Chem.
2
,
627
(
2003
).
29.
DALTON, a molecular electronic structure program, release DALTON2011,
2011
, see http://daltonprogram.org/.
30.
K. D.
Jordan
and
P. D.
Burrow
,
Chem. Rev.
87
,
557
(
1987
).
31.
D. J.
Tozer
and
F. De
Proft
,
J. Phys. Chem. A
109
,
8923
(
2005
).
32.
T.
Sommerfeld
and
R. J.
Weber
,
J. Phys. Chem. A
115
,
6675
(
2011
).
33.
M.
Puiatti
,
D. M. A.
Vera
, and
A. B.
Pierini
,
Phys. Chem. Chem. Phys.
11
,
9013
(
2009
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.3676722 for values of
$k_\text{xc,eff}^-$
kxc,eff
,
$k_\text{xc,eff}^+$
kxc,eff+
,
$k_\text{xc,eff}^\text{av}$
kxc,effav
,
$k_{T_\text{s},\text{eff}}^-$
kTs,eff
,
$k_{T_\text{s},\text{eff}}^+$
kTs,eff+
, and
$k_{T_\text{s},\text{eff}}^\text{av}$
kTs,effav
for atoms and molecules presented in Tables 1 and 2.
35.
B. Y.
Tong
and
L. J.
Sham
,
Phys. Rev.
144
,
1
(
1966
).
36.
C. F.
von Weizsäcker
,
Z. Phys.
96
,
431
(
1935
).
37.
E.
Smargiassi
and
P. A.
Madden
,
Phys. Rev. B
49
,
5220
(
1994
).
38.
L.-W.
Wang
and
M. P.
Teter
,
Phys. Rev. B
45
,
13196
(
1992
).
39.
S.
Laricchia
,
E.
Fabiano
,
L. A.
Constantin
, and
F.
Della Sala
,
J. Chem. Theory Comput.
7
,
2439
(
2011
).
40.
P.
Huang
and
E. A.
Carter
,
J. Chem. Phys.
125
,
084102
(
2006
).

Supplementary Material

You do not currently have access to this content.